Project 1:Real estate prediction using neural networks, polynomial regression, and ridge regression

library(reticulate)
use_python("/Users/gregorycrooks/opt/anaconda3/envs/r-reticulate/bin/python")

0. Project summary

The aim of this project is to analyze real estate parameters and seeing how these affect the house of price unit per area. In parallel to showcasing an exploratory data analysis with comprehensive data visualization, various non-linear Machine Learning techniques were also implemented in the modelling process. Lastly, this project includes an executive summary of results geared towards non-technical audiences.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns

1. Introduction / rationale

Our aim consists in analyzing real estate parameters and seeing how these affect the house of price unit per area. The data was collected from Sindian Dist., New Taipei City, in Taiwan. Considering the vast fluctuations in real estate due to covid, it is interesting for investors to gain additional insight as to which factors influence house prices. In this case we want to see how real estate factors could affect the house price of a unit area. This can provide additional value given that real estate data is heavily reliant on the neighborhood’s location, ability to commute, and the nearest shopping center. Linear regression, polynomial regression and neural networks will be used to analyze the dataset and conduct our subsequent analysis.

2. Data exploration

Our initial exploration of data shows that there is a total of 7 variables. Given that our research question is centered around house prices, we established the “Y house price of unit area” as our dependent variable. The 6 others (i.e. ‘No’, ‘X1 transaction date’, ‘X2 house age’,‘X3 distance to the nearest MRT station’,‘X4 number of convenience stores’, ‘X5 latitude’, ‘X6 longitude’) will be the initial explanatory variables. In parallel, there is a total of 413 observations each.

df = pd.read_csv('/Users/gregorycrooks/Desktop/Real estate.csv', na_values='?')
df.shape
## (414, 8)
df.describe()
##                No  ...  Y house price of unit area
## count  414.000000  ...                  414.000000
## mean   207.500000  ...                   37.980193
## std    119.655756  ...                   13.606488
## min      1.000000  ...                    7.600000
## 25%    104.250000  ...                   27.700000
## 50%    207.500000  ...                   38.450000
## 75%    310.750000  ...                   46.600000
## max    414.000000  ...                  117.500000
## 
## [8 rows x 8 columns]
print(df.isnull().sum())
## No                                        0
## X1 transaction date                       0
## X2 house age                              0
## X3 distance to the nearest MRT station    0
## X4 number of convenience stores           0
## X5 latitude                               0
## X6 longitude                              0
## Y house price of unit area                0
## dtype: int64

2.1 Data cleaning

To better analyze our data, we look at the different types (int or float) and notice that no substantial data cleaning will be required given that the data is in the appropriate numeric format. We also verify whether there is any null data within the dataset. In every column, there is a total of 0 Nan which means that no additional wrangling is required. Subsequently, we print a random sample of our dataset to further examine the state of the variables but no particular anomaly is detected.

pd.set_option('display.max_rows', df.shape[0]+1)
del df['No']
print(df.dtypes)
## X1 transaction date                       float64
## X2 house age                              float64
## X3 distance to the nearest MRT station    float64
## X4 number of convenience stores             int64
## X5 latitude                               float64
## X6 longitude                              float64
## Y house price of unit area                float64
## dtype: object
df.sample(10)
##      X1 transaction date  ...  Y house price of unit area
## 343             2013.000  ...                        46.6
## 34              2012.750  ...                        55.1
## 305             2013.083  ...                        55.0
## 277             2013.417  ...                        27.7
## 19              2012.667  ...                        47.7
## 36              2012.917  ...                        22.9
## 73              2013.167  ...                        20.0
## 139             2012.667  ...                        42.5
## 274             2013.167  ...                        41.0
## 366             2012.750  ...                        24.8
## 
## [10 rows x 7 columns]

2.2 Removing outliers and unnecessary variables

To make sure that the data is accurate we also look for outliers in our analysis and remove variables which are irrelevant.

We notice that there are a lot of outliers for the ’distance to the nearest MRT station variable. However, no particular anomaly is detected from the this variable given that it is not unrealistic for a real estate property to be far awar from a MRT station (even if it is 5-6 km or so). Given their geographical properties we sought to keep longitude and latitude given that they might bring insighful information with regards to our analysis. Indeed, price of houses is heavily dependent on location which might be an insightful indicator for our data.

We have a total of 6 independent variables for our analysis of the house pricing per unit: transaction data, house age, distance to the nearest MRT station, the number of convenience stores, longitude, and latitude.

sns.boxplot(x = df['X3 distance to the nearest MRT station']).set(xlabel=''
                                                                  , title = 'Boxplot 1: Distance to the nearest MRT station')

sns.boxplot(x = df['Y house price of unit area']).set(xlabel=''
                                                      , title = 'Boxplot 2: House price of unit area')

2.3 Relationship between variables

On the account of further statistical analysis, we look at the correlation and multicollinearity between variables by using the heatmat function from the seaborn package. We found a moderately strong positive correlation between the price of unit area and the longitude, the latitude, and the number of convenience stores. We also find a strong negative correlation between the distance to the nearest MRT station and the house of price of unit area. Finally, we find that the distance to the nearest MRT station proves to have a very strong negative correlation with the longitude, and a strong negative correlation with the number of convenience stores as well latitude. Nevertheless, there are some limitations to the heat map. Since latitude and longitude are interrelated geographical measures, their individual values do not provide much information. As such, our scatterplots will display how both of these combined can provide insightful information with regards to geographical clusters.

plt.figure(figsize=(5, 4), dpi=100)

ax = sns.heatmap(df.corr(), annot=True,cmap='winter')

ax.set_title('Figure 1: Heatmap displaying correlation between variables',
             pad = 20, fontsize = 10)
Italian Trulli

To analyze the distribution for our depedent variable, we plot a histogram, which shows a mild right-skewed distribution. We therefore notice that the most frequent price per unit area is between 35 and 45.

plt.figure(figsize=(5, 4), dpi=100)

ax = sns.displot(df['Y house price of unit area'],kde=True,bins=20, aspect=2).set(xlabel = 'Price of unit area',
                                                                                 title = "Histogram 1: Normal distribution of dependent variable")

                                                                  

In accordance with the correlation analysis found in the heat map, we interested in further examining variables which show a significant correlation with the house pricing. As such, we create scatterplots to analyze their relationships.

Scatterplot 1:

Scatterplot 1 follows the results displayed in the heat map between the price of unit area and the house age per transaction data (the min, 1st quantile, median, 3rd quantile, and max being displayed as interval values in the graph). Although no significant correlation is found in the scatterplot, we can visualise a very mild increase in price if the transaction date is between 2013.4 and 2013.6. While 12 months is not significant to determine this phenomenon, external factors such inflation or changes in the housing market could explain this.


plt.figure(figsize=(5, 4), dpi=100)
ax = sns.scatterplot(data=df, y=df['Y house price of unit area'], x=df['X1 transaction date'] , hue= 'X2 house age', palette="rocket")

ax.set(xlabel = 'Transaction date', ylabel = "House price of unit area")

ax.set_title("Scatterplot 1: Relationship between house price and house age for each house purchased",
             pad = 20, fontsize = 10)

plt.legend(title='House age', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
          fontsize = 10)
Italian Trulli

Scatterplot 2:

Scatterplot 2 shows the relationship between the house price of unit area and the number of convenience stores, and the distance to the nearest MRT starion. The graph concides with the correlation analysis from the heat map given that the closer distance to the nearest MRT station correlates with more convenience stores and an increase in house price of unit area. More specifically, the graph shows that houses which have a distance of up to 2500 meters to the nearest MRT station will have a significally higher price of unit area and 1 or more convenience stores. Starting from a distance of approximately 2500 meters from the nearest MRT onwards, little to no convenience stores can be found.

plt.figure(figsize=(5, 4), dpi=100)

ax = sns.scatterplot(data=df, y=df['Y house price of unit area'], x=df['X3 distance to the nearest MRT station'] 
                , hue= 'X4 number of convenience stores', palette="rocket")

ax.set(xlabel = 'Distance to the nearest MRT station', ylabel = "House price of unit area")

ax.set_title("Scatterplot 2: Relationship between house price, number of convenience stores, and distance to the nearest MRT station",
             pad = 20, fontsize = 10)

plt.legend(title='Convenience stores', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
          fontsize = 10)
Italian Trulli

Scatterplot 3:

Scatterplot 3 inspects whether the distance between the nearest MRT station concurs with more frequent transaction dates. This graph confirms that it is the case, given that the data for the transaction date (regardless of the date of purchase), is clustered around houses whose distance to the nearest MRT station is at 2500 or less, even though this also concurs with an increase in the house price of unit area. This means that buyers will tend to buy houses which are easier to commute from even if the price is higher.

plt.figure(figsize=(5, 4), dpi=100)

ax = sns.scatterplot(data=df, y=df['Y house price of unit area'], x=df['X3 distance to the nearest MRT station'] , hue= 'X1 transaction date', palette="rocket")

ax.set(xlabel = 'Distance to the nearest MRT station', ylabel = "House price of unit area")

ax.set_title("Scatterplot 3: Relationship between house price, transaction date, and distance to the nearest MRT station",
             pad = 20, fontsize = 10)

plt.legend(title='Transaction date', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
          fontsize = 10)

Italian Trulli

Scatterplot 4:

Scatterplot 4 determines how the location can impact the price. Upon seeing how latitude and longitude interrelate, we noticed a geographical cluster located between the longitude of 121.54 and a latitude between 24.97 / 24.98. The closer to this location, the more common it is to find houses with a house price of unit area ranging between 60 to 100. On the outskirts of this geographical concentration, the price of houses depreciates. This means that real estate properties are more valued in this neighborhood. This also indicates that this neighborhood is central within the Sindian district.

plt.figure(figsize=(5, 4), dpi=100)

ax = sns.scatterplot(data=df, y=df['X5 latitude'], x=df['X6 longitude'] , hue= 'Y house price of unit area', palette="rocket")

ax.set(xlabel = 'Longitude', ylabel = "Latitude")

ax.set_title("Scatterplot 4: Relationship between geographical location and house price",
             pad = 20, fontsize = 10)

plt.legend(title='House price of unit area', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
          fontsize = 10)
Italian Trulli

Scatterplot 5:

In scatterplot 5, we analyzed the relationship between the frequency of transactions and location. Data shows that houses which are the most commonly purchased are located in the neighborhood with the highest price of unit area. This further supports our findings from scatterplot 4 with regards to this neighborhood being a central location. Indeed, the vast majority of buyers want to buy houses located in this neighborhood, even if the price tends to be higher.

plt.figure(figsize=(5, 4), dpi=100)
ax = sns.scatterplot(data=df, y=df['X5 latitude'], x=df['X6 longitude'] , hue= 'X1 transaction date', palette="rocket")

ax.set(xlabel = 'Longitude', ylabel = "Latitude")

ax.set_title("Scatterplot 5: Relationship between geographical location and transaction date",
             pad = 20, fontsize = 10)

plt.legend(title='Transaction date', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
          fontsize = 10)
Italian Trulli

Scatterplot 6:

Scatterplot 6 shows the number of convenience stores in different neighborhoods in the Sindian Dist of New Taipei City, Taiwan. In concordance with scatterplots 4 and 5, this graph also indicates that the location which has the highest number of house purchases, the higher price of unit area, also has the highest number of convenience stores. Neighborhood on the outskirts of the city center will tend to have 0 convenience stores and are therefore less in demand than those with more convenience stores.

plt.figure(figsize=(5, 4), dpi=100)

ax = sns.scatterplot(data=df, y=df['X5 latitude'], x=df['X6 longitude'] , hue= 'X4 number of convenience stores', palette="rocket")

ax.set(xlabel = 'Longitude', ylabel = "Latitude")

ax.set_title("Scatterplot 6: Relationship between geographical location and number of convenience stores",
             pad = 20, fontsize = 10)

plt.legend(title='Number of convenience stores', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
          fontsize = 10)
Italian Trulli

Scatterplot 7:

Scatterplot 7 shows that the city center concentrates most of the oldest houses. While there are houses which have been built very recently in the same neighborhood, the median for house age is approximately 16. That is, out of the 40 year old houses, a much higher proportion of them is centered around this location, and it is much more common to find houses which have been built in the last 16 years outside of the city center. This implies that it is a residential neighborhood in which most of the residents are families.

plt.figure(figsize=(5, 4), dpi=100)

ax = sns.scatterplot(data=df, y=df['X5 latitude'], x=df['X6 longitude'] , hue= 'X2 house age', palette="rocket")

ax.set(xlabel = 'Longitude', ylabel = "Latitude")

ax.set_title("Scatterplot 7: Relationship between geographical location and house age",
             pad = 20, fontsize = 10)

plt.legend(title='House age', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
          fontsize = 10)
Italian Trulli

Scatterplot 8:

The 8th scatterplot displays the distance to the nearest MRT station for different geographical locations. The graph very strongly indicates how most of the houses in the city center are closer to the nearest MRT station. This also explains how the demand and price of unit area is higher, given that it is easier to commute to and from this neighborhood. Indeed, the vast majority of houses are 1000 meters or less to a MRT station, whereas houses outside of the central location will increasingly stray away from the nearest station. For instance, residents located in the area whose longitude is 121.48 and latitude is 24.96 are 6 km away from the nearest station. This means that they will take much longer to commute.

plt.figure(figsize=(5, 4), dpi=100)

ax = sns.scatterplot(data=df, y=df['X5 latitude'], x=df['X6 longitude'], hue= 'X3 distance to the nearest MRT station', palette="rocket" )

ax.set(xlabel = 'Longitude', ylabel = "Latitude")

ax.set_title("Scatterplot 8: Relationship between geographical location and distance to the nearest MRT station",
             pad = 20, fontsize = 10)

plt.legend(title='Distance to the nearest MRT station', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
          fontsize = 10)
Italian Trulli

Lastly, it is necessary to point issues of collinearity. Results strongly suggest that the closer to a MRT station, the more the number of convenience stores can be found. Out of both explanatory variables, we notice that the distance to the nearest MRT station has a stronger relationship. As such, we did not include the number of convenience stores in our resampling. We did not include latitude and longitude either given that they are storngly interrelated. There are now 3 explanatory variables: transaction date, house age, and distance to the nearest MRT station.

3. Data modelling

3.1 Data split

Our first step to detect overfitting is to split the data into a train and testing set (⅔ to ⅓ ) which we then pre-processed by standardizing features, removing the mean, and subsequently scaled to unit variance. We also set a seed to ensure reproducibility. Moreover, to assess the robustness of our model, we used the MAE (mean absolute error) as a metric. The MAE looks at the difference between the prediction of an observation and the true value of that observation.

from scipy import stats

df_changed = df.drop(columns = ["X4 number of convenience stores", 
                              "X5 latitude", 
                              "X6 longitude", 
                              'Y house price of unit area'])
X_values = df_changed.values
X_values
## array([[2012.917  ,   32.     ,   84.87882],
##        [2012.917  ,   19.5    ,  306.5947 ],
##        [2013.583  ,   13.3    ,  561.9845 ],
##        ...,
##        [2013.25   ,   18.8    ,  390.9696 ],
##        [2013.     ,    8.1    ,  104.8101 ],
##        [2013.5    ,    6.5    ,   90.45606]])
y = df['Y house price of unit area'].values
from sklearn.model_selection import train_test_split
X_train_raw, X_test_raw, y_train, y_test = train_test_split(X_values, y, test_size=0.33, random_state=2022)
# for linear regression the data needs to be standard scaled
from sklearn.preprocessing import StandardScaler
SS = StandardScaler()
SS.fit(X_train_raw)
## StandardScaler()
X_train = SS.transform(X_train_raw)
X_test = SS.transform(X_test_raw)

3.2 Initial linear regression

Firstly, we ran standard linear regression (i.e. degrees 1 polynomial). This was to set a baseline to then compare with polynomial regress. We first and foremost notice that there is no substantial overfitting in our results given the little difference between our training and testing set. We find that the baseline absolute error with standard linear regression is about 7.4.

from sklearn.linear_model import LinearRegression

model = LinearRegression(fit_intercept=True)
model.fit(X_train, y_train)
## LinearRegression()
def mae(predictions, y_test):
    return np.mean(np.abs(predictions-y_test))
LR_train_mae = mae(model.predict(X_train), y_train)
LR_test_mae = mae(model.predict(X_test), y_test)
print("LR train mae: {}".format(LR_train_mae))
## LR train mae: 6.521571756338549
print("LR test mae: {}".format(LR_test_mae))
## LR test mae: 7.384596893522332

3.3 Poly features of best fit - regression

We then create polynomial features and train a linear regression on those polynomial features (i.e. polynomial regression). We trial a number of different degrees. Results from this show that a degree has the lowest test error, with the test set having the lower mean absolute error (5.74). This polynomial degree also has the lowest overfitting given that it has the lowest gap between the train and testing sets.

from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures

n_values = range(1, 8)

train_errors = []
test_errors = []
for n in n_values:
    poly = PolynomialFeatures(degree=n, interaction_only = False)
    X_poly_train = poly.fit_transform(X_train)
    X_poly_test  = poly.transform(X_test)

    model = LinearRegression(fit_intercept=True)
    model.fit(X_poly_train, y_train)
    LR_poly_train_mae = mae(model.predict(X_poly_train), y_train)
    LR_poly_test_mae = mae(model.predict(X_poly_test), y_test)
    
    train_errors.append(LR_poly_train_mae)
    test_errors.append(LR_poly_test_mae)
    print("N {}".format(n))
    print("LR train mae: {}".format(LR_poly_train_mae))
    print("LR test mae: {}".format(LR_poly_test_mae))
    print("")
    
## LinearRegression()
## N 1
## LR train mae: 6.521571756338549
## LR test mae: 7.384596893522332
## 
## LinearRegression()
## N 2
## LR train mae: 5.4197054384186245
## LR test mae: 6.142148548896064
## 
## LinearRegression()
## N 3
## LR train mae: 5.257224893526242
## LR test mae: 5.746138475538864
## 
## LinearRegression()
## N 4
## LR train mae: 5.078420090412917
## LR test mae: 6.072010237420974
## 
## LinearRegression()
## N 5
## LR train mae: 4.593417187102522
## LR test mae: 7.629315126992115
## 
## LinearRegression()
## N 6
## LR train mae: 10.218626607626353
## LR test mae: 26.1658203125
## 
## LinearRegression()
## N 7
## LR train mae: 9.570644954309566
## LR test mae: 42.298952511975365
plt.figure()
plt.title("Graph 3: Polynomial degree against train and test error")
plt.plot(n_values, train_errors, label="train_mae")
plt.plot(n_values, test_errors, label="test_mae")
plt.xlabel("Polynomial degree")
plt.ylabel("Mean absolute error")
plt.legend()

This shows that polynomial value of N=3 is the best (it has the lowest mean absolute error on the test set). As n goes about 3, the test error starts to increase whilst the trainine error stays constant. The means it starts to overfit.

3.4 Ridge regression

from sklearn.linear_model import Ridge

for a in np.linspace(0.01, 0.1, 10):
    model = Ridge(alpha=a)
    model.fit(X_train, y_train)
    LR_train_mae = mae(model.predict(X_train), y_train)
    LR_test_mae = mae(model.predict(X_test), y_test)

    print("alpha {}".format(a))
    print("Ridge train mae: {}".format(LR_train_mae))
    print("Ridge test mae: {}".format(LR_test_mae))
    print("")
## Ridge(alpha=0.01)
## alpha 0.01
## Ridge train mae: 6.521596612634986
## Ridge test mae: 7.384567435651112
## 
## Ridge(alpha=0.020000000000000004)
## alpha 0.020000000000000004
## Ridge train mae: 6.52162146722416
## Ridge test mae: 7.384537979824193
## 
## Ridge(alpha=0.030000000000000006)
## alpha 0.030000000000000006
## Ridge train mae: 6.521646320106251
## Ridge test mae: 7.38450852604136
## 
## Ridge(alpha=0.04000000000000001)
## alpha 0.04000000000000001
## Ridge train mae: 6.52167117128143
## Ridge test mae: 7.384479074302395
## 
## Ridge(alpha=0.05000000000000001)
## alpha 0.05000000000000001
## Ridge train mae: 6.5216960207498795
## Ridge test mae: 7.384449624607088
## 
## Ridge(alpha=0.06000000000000001)
## alpha 0.06000000000000001
## Ridge train mae: 6.521720868511773
## Ridge test mae: 7.3844201769552145
## 
## Ridge(alpha=0.07)
## alpha 0.07
## Ridge train mae: 6.521745714567286
## Ridge test mae: 7.384390731346564
## 
## Ridge(alpha=0.08)
## alpha 0.08
## Ridge train mae: 6.521770558916597
## Ridge test mae: 7.38436128778092
## 
## Ridge(alpha=0.09000000000000001)
## alpha 0.09000000000000001
## Ridge train mae: 6.521795401559881
## Ridge test mae: 7.384331846258067
## 
## Ridge(alpha=0.1)
## alpha 0.1
## Ridge train mae: 6.521820242497316
## Ridge test mae: 7.3843024067777865

3.5 Poly features - ridge regression

Ridge regression shrinks the regression coefficients, so that variables, with minor contribution to the outcome, have their coefficients close to zero. The shrinkage of the coefficients is achieved by penalizing the regression model with a penalty term.


for n in range(1, 8):
    poly = PolynomialFeatures(degree=n, interaction_only = False)
    X_poly_train = poly.fit_transform(X_train)
    X_poly_test  = poly.transform(X_test)
    
    
    
    for a in np.linspace(0.01, 0.1, 10):
        model = Ridge(alpha=a)
        model.fit(X_poly_train, y_train)
        LR_train_mae = mae(model.predict(X_poly_train), y_train)
        LR_test_mae = mae(model.predict(X_poly_test), y_test)

        print("n: {}, alpha {}".format(n, a))
        print("Ridge train mae: {}".format(LR_train_mae))
        print("Ridge test mae: {}".format(LR_test_mae))
        print("")

  
## Ridge(alpha=0.01)
## n: 1, alpha 0.01
## Ridge train mae: 6.521596612634987
## Ridge test mae: 7.384567435651111
## 
## Ridge(alpha=0.020000000000000004)
## n: 1, alpha 0.020000000000000004
## Ridge train mae: 6.52162146722416
## Ridge test mae: 7.384537979824193
## 
## Ridge(alpha=0.030000000000000006)
## n: 1, alpha 0.030000000000000006
## Ridge train mae: 6.521646320106251
## Ridge test mae: 7.38450852604136
## 
## Ridge(alpha=0.04000000000000001)
## n: 1, alpha 0.04000000000000001
## Ridge train mae: 6.52167117128143
## Ridge test mae: 7.384479074302395
## 
## Ridge(alpha=0.05000000000000001)
## n: 1, alpha 0.05000000000000001
## Ridge train mae: 6.5216960207498795
## Ridge test mae: 7.384449624607087
## 
## Ridge(alpha=0.06000000000000001)
## n: 1, alpha 0.06000000000000001
## Ridge train mae: 6.521720868511773
## Ridge test mae: 7.384420176955215
## 
## Ridge(alpha=0.07)
## n: 1, alpha 0.07
## Ridge train mae: 6.5217457145672855
## Ridge test mae: 7.384390731346564
## 
## Ridge(alpha=0.08)
## n: 1, alpha 0.08
## Ridge train mae: 6.521770558916597
## Ridge test mae: 7.384361287780919
## 
## Ridge(alpha=0.09000000000000001)
## n: 1, alpha 0.09000000000000001
## Ridge train mae: 6.521795401559881
## Ridge test mae: 7.384331846258067
## 
## Ridge(alpha=0.1)
## n: 1, alpha 0.1
## Ridge train mae: 6.521820242497316
## Ridge test mae: 7.3843024067777865
## 
## Ridge(alpha=0.01)
## n: 2, alpha 0.01
## Ridge train mae: 5.419788015892516
## Ridge test mae: 6.14219237087354
## 
## Ridge(alpha=0.020000000000000004)
## n: 2, alpha 0.020000000000000004
## Ridge train mae: 5.4198705641308536
## Ridge test mae: 6.142246438154977
## 
## Ridge(alpha=0.030000000000000006)
## n: 2, alpha 0.030000000000000006
## Ridge train mae: 5.41995308314937
## Ridge test mae: 6.142316141301987
## 
## Ridge(alpha=0.04000000000000001)
## n: 2, alpha 0.04000000000000001
## Ridge train mae: 5.420035572963773
## Ridge test mae: 6.142385805767498
## 
## Ridge(alpha=0.05000000000000001)
## n: 2, alpha 0.05000000000000001
## Ridge train mae: 5.420118033589764
## Ridge test mae: 6.14245543157578
## 
## Ridge(alpha=0.06000000000000001)
## n: 2, alpha 0.06000000000000001
## Ridge train mae: 5.420200465043034
## Ridge test mae: 6.142525018751079
## 
## Ridge(alpha=0.07)
## n: 2, alpha 0.07
## Ridge train mae: 5.4202828673392585
## Ridge test mae: 6.142594567317626
## 
## Ridge(alpha=0.08)
## n: 2, alpha 0.08
## Ridge train mae: 5.420365240494108
## Ridge test mae: 6.142664077299633
## 
## Ridge(alpha=0.09000000000000001)
## n: 2, alpha 0.09000000000000001
## Ridge train mae: 5.420447584523234
## Ridge test mae: 6.142733548721289
## 
## Ridge(alpha=0.1)
## n: 2, alpha 0.1
## Ridge train mae: 5.420529899442285
## Ridge test mae: 6.142802981606769
## 
## Ridge(alpha=0.01)
## n: 3, alpha 0.01
## Ridge train mae: 5.257306460235128
## Ridge test mae: 5.746328030735457
## 
## Ridge(alpha=0.020000000000000004)
## n: 3, alpha 0.020000000000000004
## Ridge train mae: 5.2573879459838935
## Ridge test mae: 5.74651728936748
## 
## Ridge(alpha=0.030000000000000006)
## n: 3, alpha 0.030000000000000006
## Ridge train mae: 5.257469350923302
## Ridge test mae: 5.746706252073681
## 
## Ridge(alpha=0.04000000000000001)
## n: 3, alpha 0.04000000000000001
## Ridge train mae: 5.25755067520373
## Ridge test mae: 5.746894919491035
## 
## Ridge(alpha=0.05000000000000001)
## n: 3, alpha 0.05000000000000001
## Ridge train mae: 5.257631918975165
## Ridge test mae: 5.747083292254784
## 
## Ridge(alpha=0.06000000000000001)
## n: 3, alpha 0.06000000000000001
## Ridge train mae: 5.2577130823871885
## Ridge test mae: 5.747271370998428
## 
## Ridge(alpha=0.07)
## n: 3, alpha 0.07
## Ridge train mae: 5.257794165589003
## Ridge test mae: 5.747459156353747
## 
## Ridge(alpha=0.08)
## n: 3, alpha 0.08
## Ridge train mae: 5.257875168729412
## Ridge test mae: 5.747646648950769
## 
## Ridge(alpha=0.09000000000000001)
## n: 3, alpha 0.09000000000000001
## Ridge train mae: 5.2579560919568396
## Ridge test mae: 5.747833849417803
## 
## Ridge(alpha=0.1)
## n: 3, alpha 0.1
## Ridge train mae: 5.258036935419317
## Ridge test mae: 5.748020758381457
## 
## Ridge(alpha=0.01)
## n: 4, alpha 0.01
## Ridge train mae: 5.078453229869225
## Ridge test mae: 6.07166585425305
## 
## Ridge(alpha=0.020000000000000004)
## n: 4, alpha 0.020000000000000004
## Ridge train mae: 5.078486728809414
## Ridge test mae: 6.071324703217347
## 
## Ridge(alpha=0.030000000000000006)
## n: 4, alpha 0.030000000000000006
## Ridge train mae: 5.078520581945106
## Ridge test mae: 6.070986746705667
## 
## Ridge(alpha=0.04000000000000001)
## n: 4, alpha 0.04000000000000001
## Ridge train mae: 5.078554784064771
## Ridge test mae: 6.070651947652118
## 
## Ridge(alpha=0.05000000000000001)
## n: 4, alpha 0.05000000000000001
## Ridge train mae: 5.078589330032319
## Ridge test mae: 6.0703202695232665
## 
## Ridge(alpha=0.06000000000000001)
## n: 4, alpha 0.06000000000000001
## Ridge train mae: 5.078624214785893
## Ridge test mae: 6.069991676309093
## 
## Ridge(alpha=0.07)
## n: 4, alpha 0.07
## Ridge train mae: 5.078659433336498
## Ridge test mae: 6.069666132513707
## 
## Ridge(alpha=0.08)
## n: 4, alpha 0.08
## Ridge train mae: 5.07869498076683
## Ridge test mae: 6.069343603146454
## 
## Ridge(alpha=0.09000000000000001)
## n: 4, alpha 0.09000000000000001
## Ridge train mae: 5.078730852229972
## Ridge test mae: 6.069024053713063
## 
## Ridge(alpha=0.1)
## n: 4, alpha 0.1
## Ridge train mae: 5.078767042948241
## Ridge test mae: 6.068707450207112
## 
## Ridge(alpha=0.01)
## n: 5, alpha 0.01
## Ridge train mae: 4.592942321154879
## Ridge test mae: 7.6263872681781395
## 
## Ridge(alpha=0.020000000000000004)
## n: 5, alpha 0.020000000000000004
## Ridge train mae: 4.592472239791051
## Ridge test mae: 7.623392592210273
## 
## Ridge(alpha=0.030000000000000006)
## n: 5, alpha 0.030000000000000006
## Ridge train mae: 4.592006794810789
## Ridge test mae: 7.620335412965674
## 
## Ridge(alpha=0.04000000000000001)
## n: 5, alpha 0.04000000000000001
## Ridge train mae: 4.591545846385613
## Ridge test mae: 7.617219781492997
## 
## Ridge(alpha=0.05000000000000001)
## n: 5, alpha 0.05000000000000001
## Ridge train mae: 4.591089262458251
## Ridge test mae: 7.61404950461583
## 
## Ridge(alpha=0.06000000000000001)
## n: 5, alpha 0.06000000000000001
## Ridge train mae: 4.590675166559448
## Ridge test mae: 7.610923137786759
## 
## Ridge(alpha=0.07)
## n: 5, alpha 0.07
## Ridge train mae: 4.590284071959667
## Ridge test mae: 7.60782720216512
## 
## Ridge(alpha=0.08)
## n: 5, alpha 0.08
## Ridge train mae: 4.589894872552797
## Ridge test mae: 7.604685114387745
## 
## Ridge(alpha=0.09000000000000001)
## n: 5, alpha 0.09000000000000001
## Ridge train mae: 4.58950755824834
## Ridge test mae: 7.601499903464217
## 
## Ridge(alpha=0.1)
## n: 5, alpha 0.1
## Ridge train mae: 4.589122119093563
## Ridge test mae: 7.598274424900914
## 
## Ridge(alpha=0.01)
## n: 6, alpha 0.01
## Ridge train mae: 4.372854140732388
## Ridge test mae: 13.578451730706403
## 
## Ridge(alpha=0.020000000000000004)
## n: 6, alpha 0.020000000000000004
## Ridge train mae: 4.361406078796805
## Ridge test mae: 13.063643280873213
## 
## Ridge(alpha=0.030000000000000006)
## n: 6, alpha 0.030000000000000006
## Ridge train mae: 4.351787912179385
## Ridge test mae: 12.606954306842633
## 
## Ridge(alpha=0.04000000000000001)
## n: 6, alpha 0.04000000000000001
## Ridge train mae: 4.343233339562473
## Ridge test mae: 12.199491457494283
## 
## Ridge(alpha=0.05000000000000001)
## n: 6, alpha 0.05000000000000001
## Ridge train mae: 4.335503318596305
## Ridge test mae: 11.833373501412852
## 
## Ridge(alpha=0.06000000000000001)
## n: 6, alpha 0.06000000000000001
## Ridge train mae: 4.32974017655789
## Ridge test mae: 11.50287180855749
## 
## Ridge(alpha=0.07)
## n: 6, alpha 0.07
## Ridge train mae: 4.325716639441944
## Ridge test mae: 11.203357982585137
## 
## Ridge(alpha=0.08)
## n: 6, alpha 0.08
## Ridge train mae: 4.322743599071541
## Ridge test mae: 10.932097376706288
## 
## Ridge(alpha=0.09000000000000001)
## n: 6, alpha 0.09000000000000001
## Ridge train mae: 4.320829259063197
## Ridge test mae: 10.855601985120046
## 
## Ridge(alpha=0.1)
## n: 6, alpha 0.1
## Ridge train mae: 4.3191742804859405
## Ridge test mae: 10.844328497651988
## 
## Ridge(alpha=0.01)
## n: 7, alpha 0.01
## Ridge train mae: 3.6695634828980355
## Ridge test mae: 32.971535138420286
## 
## Ridge(alpha=0.020000000000000004)
## n: 7, alpha 0.020000000000000004
## Ridge train mae: 3.6519236204065595
## Ridge test mae: 30.344671517825283
## 
## Ridge(alpha=0.030000000000000006)
## n: 7, alpha 0.030000000000000006
## Ridge train mae: 3.6499653510706715
## Ridge test mae: 28.488463369577268
## 
## Ridge(alpha=0.04000000000000001)
## n: 7, alpha 0.04000000000000001
## Ridge train mae: 3.65595485104245
## Ridge test mae: 27.13309705562507
## 
## Ridge(alpha=0.05000000000000001)
## n: 7, alpha 0.05000000000000001
## Ridge train mae: 3.661490497062608
## Ridge test mae: 26.151214938327325
## 
## Ridge(alpha=0.06000000000000001)
## n: 7, alpha 0.06000000000000001
## Ridge train mae: 3.6664852845603
## Ridge test mae: 25.360421728811534
## 
## Ridge(alpha=0.07)
## n: 7, alpha 0.07
## Ridge train mae: 3.6723092910229034
## Ridge test mae: 24.705760260224125
## 
## Ridge(alpha=0.08)
## n: 7, alpha 0.08
## Ridge train mae: 3.6797223955442577
## Ridge test mae: 24.149637403823164
## 
## Ridge(alpha=0.09000000000000001)
## n: 7, alpha 0.09000000000000001
## Ridge train mae: 3.686285498881524
## Ridge test mae: 23.668271292252104
## 
## Ridge(alpha=0.1)
## n: 7, alpha 0.1
## Ridge train mae: 3.6924817648873645
## Ridge test mae: 23.244456914649188

n=3
poly = PolynomialFeatures(degree=n, interaction_only = False)
X_poly_train = poly.fit_transform(X_train)
X_poly_test  = poly.transform(X_test)



train_mae = []
test_mae  = []
a_values = np.linspace(0.01, 0.1, 10) 
for a in a_values:
    model = Ridge(alpha=a)
    model.fit(X_poly_train, y_train)
    LR_train_mae = mae(model.predict(X_poly_train), y_train)
    LR_test_mae = mae(model.predict(X_poly_test), y_test)
    
    train_mae.append(LR_train_mae)
    test_mae.append(LR_test_mae)
    
    #print("n: {}, alpha {}".format(n, a))
    #print("Ridge train mae: {}".format(LR_train_mae))
    #print("Ridge test mae: {}".format(LR_test_mae))
    #print("")
## Ridge(alpha=0.01)
## Ridge(alpha=0.020000000000000004)
## Ridge(alpha=0.030000000000000006)
## Ridge(alpha=0.04000000000000001)
## Ridge(alpha=0.05000000000000001)
## Ridge(alpha=0.06000000000000001)
## Ridge(alpha=0.07)
## Ridge(alpha=0.08)
## Ridge(alpha=0.09000000000000001)
## Ridge(alpha=0.1)
plt.plot(a_values, train_mae, label="train_mae")
plt.plot(a_values, test_mae, label="test_mae")
plt.xlabel("alpha")
plt.legend()

Results from ridge regression show that the tuning parameter does not make a sustantial difference when using the polynomial of best fit. Indeed, ridge is effective when there is a high number of predictors and high collinearity. In this case, the highly collinear variables have been removed in the EDA, leaving only 3 predictors for out modelling process. As such, we will use neural networks to further reinforce our model.

3.6 Neural networks

Neural networks are extremely good at finding patterns in complex data such as images or sound. Neural networks create their own non-linear features through the process of backpropagation. Whilst neural networks are known for working well on complex homogenous data (images, sound, video), we are interested to see if they would work on a task such as this (tabular data).


import keras
class Mul(keras.layers.Layer):
    def __init__(self, val):
        self.const = val
    def call(self, inputs):
        return inputs*self.const

We trial two model architectures: architecture one has two hidden layers of 10 and 5 nodes; architecture two has one hidden layer of 3 nodes. Each architecture was trained for 100 epochs, using an ADAM optimizer, and a loss function of mean squared error (however we continue to validate using MAE).

model = keras.models.Sequential()
model.add(keras.layers.Dense(10, input_dim=3, activation="relu"))
model.add(keras.layers.Dense(5, activation="relu"))
model.add(keras.layers.Dense(1, activation="relu"))
#model.add(keras.layers.Lambda(lambda x:x*78.3))

# the softmax puts the output of the network between 0 and 1. 
# We need to multiple this by the max expected value to ensure the network outputs in the desired range

model.compile(loss="mse", optimizer="adam", metrics=["mae"])

history = model.fit(X_train, y_train, epochs=100, batch_size=1, validation_data=(X_test, y_test))
## Epoch 1/100
## 
  1/277 [..............................] - ETA: 2:44 - loss: 2470.0901 - mae: 49.7000
 36/277 [==>...........................] - ETA: 0s - loss: 1585.0010 - mae: 37.5212  
 67/277 [======>.......................] - ETA: 0s - loss: 1523.6066 - mae: 36.8430
 99/277 [=========>....................] - ETA: 0s - loss: 1594.0640 - mae: 37.6664
136/277 [=============>................] - ETA: 0s - loss: 1625.4529 - mae: 37.8797
172/277 [=================>............] - ETA: 0s - loss: 1626.1511 - mae: 37.9397
205/277 [=====================>........] - ETA: 0s - loss: 1613.7715 - mae: 37.7664
238/277 [========================>.....] - ETA: 0s - loss: 1636.7510 - mae: 38.0901
266/277 [===========================>..] - ETA: 0s - loss: 1639.4038 - mae: 38.1997
277/277 [==============================] - 1s 3ms/step - loss: 1623.0206 - mae: 37.9851 - val_loss: 1446.9401 - val_mae: 35.3607
## Epoch 2/100
## 
  1/277 [..............................] - ETA: 0s - loss: 104.0011 - mae: 10.1981
 35/277 [==>...........................] - ETA: 0s - loss: 1531.8750 - mae: 35.6593
 74/277 [=======>......................] - ETA: 0s - loss: 1493.2561 - mae: 35.6105
109/277 [==========>...................] - ETA: 0s - loss: 1377.2374 - mae: 34.1404
133/277 [=============>................] - ETA: 0s - loss: 1373.6099 - mae: 34.1585
152/277 [===============>..............] - ETA: 0s - loss: 1383.6621 - mae: 34.4774
171/277 [=================>............] - ETA: 0s - loss: 1390.2277 - mae: 34.6792
190/277 [===================>..........] - ETA: 0s - loss: 1359.4875 - mae: 34.2496
215/277 [======================>.......] - ETA: 0s - loss: 1312.6556 - mae: 33.6298
241/277 [=========================>....] - ETA: 0s - loss: 1337.4366 - mae: 33.9648
264/277 [===========================>..] - ETA: 0s - loss: 1297.0752 - mae: 33.3564
277/277 [==============================] - 1s 3ms/step - loss: 1282.7953 - mae: 33.1719 - val_loss: 882.3262 - val_mae: 26.1436
## Epoch 3/100
## 
  1/277 [..............................] - ETA: 1s - loss: 1814.3890 - mae: 42.5956
 13/277 [>.............................] - ETA: 1s - loss: 945.6012 - mae: 27.6106 
 33/277 [==>...........................] - ETA: 0s - loss: 835.2387 - mae: 26.0366
 62/277 [=====>........................] - ETA: 0s - loss: 820.8144 - mae: 25.9476
 92/277 [========>.....................] - ETA: 0s - loss: 732.7256 - mae: 24.5281
124/277 [============>.................] - ETA: 0s - loss: 718.3583 - mae: 24.1829
155/277 [===============>..............] - ETA: 0s - loss: 690.1375 - mae: 23.3792
186/277 [===================>..........] - ETA: 0s - loss: 634.6744 - mae: 22.2206
213/277 [======================>.......] - ETA: 0s - loss: 609.5428 - mae: 21.5228
237/277 [========================>.....] - ETA: 0s - loss: 576.8354 - mae: 20.8218
260/277 [===========================>..] - ETA: 0s - loss: 539.7739 - mae: 19.9117
277/277 [==============================] - 1s 3ms/step - loss: 521.2773 - mae: 19.5483 - val_loss: 233.1032 - val_mae: 10.8795
## Epoch 4/100
## 
  1/277 [..............................] - ETA: 0s - loss: 109.3886 - mae: 10.4589
 21/277 [=>............................] - ETA: 0s - loss: 234.5261 - mae: 13.6821
 40/277 [===>..........................] - ETA: 0s - loss: 249.3173 - mae: 12.6337
 55/277 [====>.........................] - ETA: 0s - loss: 208.8372 - mae: 11.4012
 68/277 [======>.......................] - ETA: 0s - loss: 201.7417 - mae: 11.4719
 80/277 [=======>......................] - ETA: 0s - loss: 182.4078 - mae: 10.9005
 96/277 [=========>....................] - ETA: 0s - loss: 164.9253 - mae: 10.3065
111/277 [===========>..................] - ETA: 0s - loss: 152.6112 - mae: 9.8550 
127/277 [============>.................] - ETA: 0s - loss: 149.2401 - mae: 9.8212
141/277 [==============>...............] - ETA: 0s - loss: 142.7501 - mae: 9.5647
156/277 [===============>..............] - ETA: 0s - loss: 138.8747 - mae: 9.5186
175/277 [=================>............] - ETA: 0s - loss: 132.9365 - mae: 9.3362
194/277 [====================>.........] - ETA: 0s - loss: 132.8639 - mae: 9.2847
212/277 [=====================>........] - ETA: 0s - loss: 127.0636 - mae: 9.0284
228/277 [=======================>......] - ETA: 0s - loss: 131.0988 - mae: 9.0690
243/277 [=========================>....] - ETA: 0s - loss: 126.1761 - mae: 8.8826
258/277 [==========================>...] - ETA: 0s - loss: 122.7879 - mae: 8.7811
273/277 [============================>.] - ETA: 0s - loss: 119.5142 - mae: 8.6710
277/277 [==============================] - 1s 4ms/step - loss: 117.9464 - mae: 8.5848 - val_loss: 115.0206 - val_mae: 7.4276
## Epoch 5/100
## 
  1/277 [..............................] - ETA: 0s - loss: 118.6164 - mae: 10.8911
 22/277 [=>............................] - ETA: 0s - loss: 44.8535 - mae: 5.7210  
 43/277 [===>..........................] - ETA: 0s - loss: 72.3914 - mae: 6.7920
 61/277 [=====>........................] - ETA: 0s - loss: 59.4439 - mae: 6.0624
 82/277 [=======>......................] - ETA: 0s - loss: 55.3029 - mae: 5.8916
102/277 [==========>...................] - ETA: 0s - loss: 51.5058 - mae: 5.6803
122/277 [============>.................] - ETA: 0s - loss: 62.8848 - mae: 6.0548
143/277 [==============>...............] - ETA: 0s - loss: 57.9190 - mae: 5.8721
162/277 [================>.............] - ETA: 0s - loss: 56.2607 - mae: 5.7886
183/277 [==================>...........] - ETA: 0s - loss: 56.6964 - mae: 5.7589
204/277 [=====================>........] - ETA: 0s - loss: 56.3083 - mae: 5.7954
224/277 [=======================>......] - ETA: 0s - loss: 54.6258 - mae: 5.7146
243/277 [=========================>....] - ETA: 0s - loss: 60.9433 - mae: 5.9691
262/277 [===========================>..] - ETA: 0s - loss: 65.4843 - mae: 6.1153
277/277 [==============================] - 1s 4ms/step - loss: 71.0354 - mae: 6.2787 - val_loss: 100.2990 - val_mae: 6.7794
## Epoch 6/100
## 
  1/277 [..............................] - ETA: 0s - loss: 653.2460 - mae: 25.5587
 23/277 [=>............................] - ETA: 0s - loss: 61.0698 - mae: 5.6561  
 45/277 [===>..........................] - ETA: 0s - loss: 81.1723 - mae: 6.5622
 66/277 [======>.......................] - ETA: 0s - loss: 69.1783 - mae: 6.1926
 86/277 [========>.....................] - ETA: 0s - loss: 104.9826 - mae: 7.4678
107/277 [==========>...................] - ETA: 0s - loss: 89.2531 - mae: 6.7937 
128/277 [============>.................] - ETA: 0s - loss: 81.4578 - mae: 6.5079
149/277 [===============>..............] - ETA: 0s - loss: 84.5265 - mae: 6.5581
170/277 [=================>............] - ETA: 0s - loss: 79.2313 - mae: 6.4047
192/277 [===================>..........] - ETA: 0s - loss: 75.0745 - mae: 6.2491
217/277 [======================>.......] - ETA: 0s - loss: 70.9571 - mae: 6.0723
248/277 [=========================>....] - ETA: 0s - loss: 68.7197 - mae: 5.9260
277/277 [==============================] - 1s 3ms/step - loss: 64.7187 - mae: 5.7063 - val_loss: 94.7780 - val_mae: 6.4805
## Epoch 7/100
## 
  1/277 [..............................] - ETA: 0s - loss: 6.5656 - mae: 2.5623
 36/277 [==>...........................] - ETA: 0s - loss: 103.5271 - mae: 7.1643
 68/277 [======>.......................] - ETA: 0s - loss: 86.1765 - mae: 6.4793 
103/277 [==========>...................] - ETA: 0s - loss: 88.9114 - mae: 6.5265
127/277 [============>.................] - ETA: 0s - loss: 84.3702 - mae: 6.2104
148/277 [===============>..............] - ETA: 0s - loss: 77.7900 - mae: 5.9906
166/277 [================>.............] - ETA: 0s - loss: 75.1909 - mae: 5.9270
185/277 [===================>..........] - ETA: 0s - loss: 71.4747 - mae: 5.8236
203/277 [====================>.........] - ETA: 0s - loss: 67.9380 - mae: 5.6970
225/277 [=======================>......] - ETA: 0s - loss: 65.9511 - mae: 5.6816
254/277 [==========================>...] - ETA: 0s - loss: 65.1944 - mae: 5.6518
277/277 [==============================] - 1s 3ms/step - loss: 63.3085 - mae: 5.5795 - val_loss: 93.6428 - val_mae: 6.4115
## Epoch 8/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.5929 - mae: 0.7700
 37/277 [===>..........................] - ETA: 0s - loss: 68.9690 - mae: 6.0505
 70/277 [======>.......................] - ETA: 0s - loss: 64.4171 - mae: 5.8620
101/277 [=========>....................] - ETA: 0s - loss: 58.3360 - mae: 5.5235
136/277 [=============>................] - ETA: 0s - loss: 59.0053 - mae: 5.2864
175/277 [=================>............] - ETA: 0s - loss: 56.6301 - mae: 5.2944
210/277 [=====================>........] - ETA: 0s - loss: 62.2523 - mae: 5.5200
248/277 [=========================>....] - ETA: 0s - loss: 65.2024 - mae: 5.6234
277/277 [==============================] - 1s 2ms/step - loss: 62.7366 - mae: 5.5280 - val_loss: 92.7976 - val_mae: 6.3701
## Epoch 9/100
## 
  1/277 [..............................] - ETA: 0s - loss: 54.6007 - mae: 7.3892
 36/277 [==>...........................] - ETA: 0s - loss: 43.7004 - mae: 4.6326
 72/277 [======>.......................] - ETA: 0s - loss: 55.9864 - mae: 5.5429
108/277 [==========>...................] - ETA: 0s - loss: 62.4096 - mae: 5.5233
131/277 [=============>................] - ETA: 0s - loss: 71.3928 - mae: 5.8135
159/277 [================>.............] - ETA: 0s - loss: 66.5445 - mae: 5.6706
189/277 [===================>..........] - ETA: 0s - loss: 67.8519 - mae: 5.8201
218/277 [======================>.......] - ETA: 0s - loss: 70.1414 - mae: 5.8063
245/277 [=========================>....] - ETA: 0s - loss: 66.9693 - mae: 5.6851
274/277 [============================>.] - ETA: 0s - loss: 62.2213 - mae: 5.4865
277/277 [==============================] - 1s 2ms/step - loss: 62.1602 - mae: 5.5044 - val_loss: 91.7074 - val_mae: 6.3057
## Epoch 10/100
## 
  1/277 [..............................] - ETA: 0s - loss: 7.3133 - mae: 2.7043
 29/277 [==>...........................] - ETA: 0s - loss: 41.3270 - mae: 4.8764
 61/277 [=====>........................] - ETA: 0s - loss: 41.5370 - mae: 4.4742
 92/277 [========>.....................] - ETA: 0s - loss: 46.3510 - mae: 4.6970
120/277 [===========>..................] - ETA: 0s - loss: 65.7495 - mae: 5.3160
151/277 [===============>..............] - ETA: 0s - loss: 71.8047 - mae: 5.6798
185/277 [===================>..........] - ETA: 0s - loss: 72.1990 - mae: 5.7529
214/277 [======================>.......] - ETA: 0s - loss: 67.3413 - mae: 5.5899
239/277 [========================>.....] - ETA: 0s - loss: 63.4983 - mae: 5.4624
269/277 [============================>.] - ETA: 0s - loss: 62.8580 - mae: 5.5183
277/277 [==============================] - 1s 2ms/step - loss: 61.7240 - mae: 5.4706 - val_loss: 92.1252 - val_mae: 6.3121
## Epoch 11/100
## 
  1/277 [..............................] - ETA: 0s - loss: 10.2782 - mae: 3.2060
 29/277 [==>...........................] - ETA: 0s - loss: 60.8942 - mae: 5.6027
 57/277 [=====>........................] - ETA: 0s - loss: 46.8939 - mae: 4.9756
 87/277 [========>.....................] - ETA: 0s - loss: 41.4603 - mae: 4.6299
113/277 [===========>..................] - ETA: 0s - loss: 42.0463 - mae: 4.7887
141/277 [==============>...............] - ETA: 0s - loss: 54.3815 - mae: 5.0250
176/277 [==================>...........] - ETA: 0s - loss: 59.9204 - mae: 5.3302
208/277 [=====================>........] - ETA: 0s - loss: 61.1359 - mae: 5.4754
244/277 [=========================>....] - ETA: 0s - loss: 61.2416 - mae: 5.3835
277/277 [==============================] - 1s 2ms/step - loss: 61.3575 - mae: 5.3898 - val_loss: 90.7678 - val_mae: 6.1978
## Epoch 12/100
## 
  1/277 [..............................] - ETA: 0s - loss: 24.6365 - mae: 4.9635
 35/277 [==>...........................] - ETA: 0s - loss: 52.2816 - mae: 5.4727
 73/277 [======>.......................] - ETA: 0s - loss: 66.0379 - mae: 5.7484
116/277 [===========>..................] - ETA: 0s - loss: 58.8523 - mae: 5.2968
155/277 [===============>..............] - ETA: 0s - loss: 55.6930 - mae: 5.2226
192/277 [===================>..........] - ETA: 0s - loss: 59.6112 - mae: 5.3930
229/277 [=======================>......] - ETA: 0s - loss: 63.3024 - mae: 5.5597
264/277 [===========================>..] - ETA: 0s - loss: 60.0648 - mae: 5.3648
277/277 [==============================] - 1s 2ms/step - loss: 61.3264 - mae: 5.4117 - val_loss: 90.3098 - val_mae: 6.1619
## Epoch 13/100
## 
  1/277 [..............................] - ETA: 0s - loss: 15.0427 - mae: 3.8785
 45/277 [===>..........................] - ETA: 0s - loss: 59.3843 - mae: 5.6037
 86/277 [========>.....................] - ETA: 0s - loss: 59.2491 - mae: 5.3261
125/277 [============>.................] - ETA: 0s - loss: 63.2347 - mae: 5.3836
166/277 [================>.............] - ETA: 0s - loss: 64.6308 - mae: 5.5330
199/277 [====================>.........] - ETA: 0s - loss: 60.1450 - mae: 5.3708
237/277 [========================>.....] - ETA: 0s - loss: 60.8867 - mae: 5.3520
277/277 [==============================] - 0s 2ms/step - loss: 60.9800 - mae: 5.4448 - val_loss: 90.8200 - val_mae: 6.1889
## Epoch 14/100
## 
  1/277 [..............................] - ETA: 0s - loss: 175.9592 - mae: 13.2650
 36/277 [==>...........................] - ETA: 0s - loss: 72.1883 - mae: 5.5733  
 72/277 [======>.......................] - ETA: 0s - loss: 65.5976 - mae: 5.6126
110/277 [==========>...................] - ETA: 0s - loss: 59.5437 - mae: 5.3231
148/277 [===============>..............] - ETA: 0s - loss: 62.2674 - mae: 5.2912
186/277 [===================>..........] - ETA: 0s - loss: 58.3871 - mae: 5.2528
226/277 [=======================>......] - ETA: 0s - loss: 62.3106 - mae: 5.4952
263/277 [===========================>..] - ETA: 0s - loss: 60.0152 - mae: 5.4344
277/277 [==============================] - 1s 2ms/step - loss: 61.0885 - mae: 5.4398 - val_loss: 91.6540 - val_mae: 6.2739
## Epoch 15/100
## 
  1/277 [..............................] - ETA: 0s - loss: 42.4804 - mae: 6.5177
 41/277 [===>..........................] - ETA: 0s - loss: 65.2598 - mae: 6.0085
 82/277 [=======>......................] - ETA: 0s - loss: 85.7180 - mae: 6.3553
121/277 [============>.................] - ETA: 0s - loss: 72.4970 - mae: 5.9901
158/277 [================>.............] - ETA: 0s - loss: 62.6036 - mae: 5.5116
197/277 [====================>.........] - ETA: 0s - loss: 60.5060 - mae: 5.4875
235/277 [========================>.....] - ETA: 0s - loss: 56.1341 - mae: 5.2914
271/277 [============================>.] - ETA: 0s - loss: 60.1978 - mae: 5.3915
277/277 [==============================] - 1s 2ms/step - loss: 60.8460 - mae: 5.3953 - val_loss: 90.1211 - val_mae: 6.1333
## Epoch 16/100
## 
  1/277 [..............................] - ETA: 0s - loss: 97.2016 - mae: 9.8591
 36/277 [==>...........................] - ETA: 0s - loss: 56.2285 - mae: 5.3438
 72/277 [======>.......................] - ETA: 0s - loss: 52.3105 - mae: 5.2124
103/277 [==========>...................] - ETA: 0s - loss: 62.4597 - mae: 5.4999
132/277 [=============>................] - ETA: 0s - loss: 54.8259 - mae: 5.1714
170/277 [=================>............] - ETA: 0s - loss: 53.2260 - mae: 5.0451
201/277 [====================>.........] - ETA: 0s - loss: 58.0763 - mae: 5.3524
229/277 [=======================>......] - ETA: 0s - loss: 62.8855 - mae: 5.4549
262/277 [===========================>..] - ETA: 0s - loss: 61.1940 - mae: 5.4056
277/277 [==============================] - 1s 2ms/step - loss: 60.7129 - mae: 5.4128 - val_loss: 89.7553 - val_mae: 6.1455
## Epoch 17/100
## 
  1/277 [..............................] - ETA: 0s - loss: 54.7216 - mae: 7.3974
 40/277 [===>..........................] - ETA: 0s - loss: 50.2469 - mae: 4.7798
 81/277 [=======>......................] - ETA: 0s - loss: 66.3035 - mae: 5.8130
115/277 [===========>..................] - ETA: 0s - loss: 66.9770 - mae: 5.5458
152/277 [===============>..............] - ETA: 0s - loss: 61.8836 - mae: 5.3948
190/277 [===================>..........] - ETA: 0s - loss: 57.2526 - mae: 5.2742
223/277 [=======================>......] - ETA: 0s - loss: 55.0103 - mae: 5.1093
258/277 [==========================>...] - ETA: 0s - loss: 53.3162 - mae: 5.1144
277/277 [==============================] - 1s 2ms/step - loss: 60.1900 - mae: 5.3987 - val_loss: 91.2614 - val_mae: 6.2485
## Epoch 18/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.0203 - mae: 0.1426
 37/277 [===>..........................] - ETA: 0s - loss: 82.3757 - mae: 5.8962
 74/277 [=======>......................] - ETA: 0s - loss: 77.6830 - mae: 6.2317
107/277 [==========>...................] - ETA: 0s - loss: 70.7317 - mae: 5.9849
142/277 [==============>...............] - ETA: 0s - loss: 70.4760 - mae: 5.8807
176/277 [==================>...........] - ETA: 0s - loss: 65.6402 - mae: 5.7470
210/277 [=====================>........] - ETA: 0s - loss: 68.4053 - mae: 5.7848
251/277 [==========================>...] - ETA: 0s - loss: 62.9046 - mae: 5.5297
277/277 [==============================] - 1s 2ms/step - loss: 60.1262 - mae: 5.4036 - val_loss: 90.8319 - val_mae: 6.1611
## Epoch 19/100
## 
  1/277 [..............................] - ETA: 0s - loss: 62.3051 - mae: 7.8934
 35/277 [==>...........................] - ETA: 0s - loss: 52.2037 - mae: 5.7344
 71/277 [======>.......................] - ETA: 0s - loss: 95.5340 - mae: 6.8965
111/277 [===========>..................] - ETA: 0s - loss: 75.9115 - mae: 6.2099
152/277 [===============>..............] - ETA: 0s - loss: 72.9653 - mae: 5.8805
191/277 [===================>..........] - ETA: 0s - loss: 63.2571 - mae: 5.4172
235/277 [========================>.....] - ETA: 0s - loss: 61.0962 - mae: 5.3628
275/277 [============================>.] - ETA: 0s - loss: 58.3668 - mae: 5.2810
277/277 [==============================] - 1s 2ms/step - loss: 59.8911 - mae: 5.3490 - val_loss: 91.0848 - val_mae: 6.1839
## Epoch 20/100
## 
  1/277 [..............................] - ETA: 0s - loss: 19.3275 - mae: 4.3963
 43/277 [===>..........................] - ETA: 0s - loss: 99.3543 - mae: 6.2296
 80/277 [=======>......................] - ETA: 0s - loss: 69.4257 - mae: 5.2170
120/277 [===========>..................] - ETA: 0s - loss: 68.3062 - mae: 5.4812
158/277 [================>.............] - ETA: 0s - loss: 63.4270 - mae: 5.3295
197/277 [====================>.........] - ETA: 0s - loss: 63.8321 - mae: 5.4434
237/277 [========================>.....] - ETA: 0s - loss: 60.9118 - mae: 5.4631
273/277 [============================>.] - ETA: 0s - loss: 60.2109 - mae: 5.3721
277/277 [==============================] - 1s 2ms/step - loss: 59.8212 - mae: 5.3750 - val_loss: 89.3640 - val_mae: 6.0898
## Epoch 21/100
## 
  1/277 [..............................] - ETA: 0s - loss: 34.7606 - mae: 5.8958
 36/277 [==>...........................] - ETA: 0s - loss: 91.0651 - mae: 6.9560
 68/277 [======>.......................] - ETA: 0s - loss: 72.4344 - mae: 6.0508
104/277 [==========>...................] - ETA: 0s - loss: 68.4009 - mae: 5.9631
140/277 [==============>...............] - ETA: 0s - loss: 70.3115 - mae: 5.8633
179/277 [==================>...........] - ETA: 0s - loss: 59.7695 - mae: 5.3957
218/277 [======================>.......] - ETA: 0s - loss: 58.7465 - mae: 5.3488
249/277 [=========================>....] - ETA: 0s - loss: 60.7046 - mae: 5.4464
277/277 [==============================] - 1s 2ms/step - loss: 59.7461 - mae: 5.3951 - val_loss: 89.5464 - val_mae: 6.0995
## Epoch 22/100
## 
  1/277 [..............................] - ETA: 0s - loss: 256.8375 - mae: 16.0262
 40/277 [===>..........................] - ETA: 0s - loss: 98.2784 - mae: 6.5195  
 74/277 [=======>......................] - ETA: 0s - loss: 81.0695 - mae: 6.1099
107/277 [==========>...................] - ETA: 0s - loss: 68.4407 - mae: 5.6434
129/277 [============>.................] - ETA: 0s - loss: 64.3109 - mae: 5.5475
146/277 [==============>...............] - ETA: 0s - loss: 62.3588 - mae: 5.4912
165/277 [================>.............] - ETA: 0s - loss: 57.8265 - mae: 5.2457
183/277 [==================>...........] - ETA: 0s - loss: 53.7525 - mae: 5.0442
201/277 [====================>.........] - ETA: 0s - loss: 58.6180 - mae: 5.1358
223/277 [=======================>......] - ETA: 0s - loss: 63.4442 - mae: 5.4245
247/277 [=========================>....] - ETA: 0s - loss: 61.8944 - mae: 5.3978
277/277 [==============================] - 1s 3ms/step - loss: 59.1370 - mae: 5.3011 - val_loss: 89.5793 - val_mae: 6.0811
## Epoch 23/100
## 
  1/277 [..............................] - ETA: 0s - loss: 119.4586 - mae: 10.9297
 23/277 [=>............................] - ETA: 0s - loss: 22.9989 - mae: 3.3281  
 39/277 [===>..........................] - ETA: 0s - loss: 47.0211 - mae: 4.5439
 60/277 [=====>........................] - ETA: 0s - loss: 61.7966 - mae: 5.2480
 87/277 [========>.....................] - ETA: 0s - loss: 64.3730 - mae: 5.4797
122/277 [============>.................] - ETA: 0s - loss: 76.8154 - mae: 5.9115
166/277 [================>.............] - ETA: 0s - loss: 68.4972 - mae: 5.7618
206/277 [=====================>........] - ETA: 0s - loss: 62.9064 - mae: 5.5419
234/277 [========================>.....] - ETA: 0s - loss: 57.8920 - mae: 5.3171
267/277 [===========================>..] - ETA: 0s - loss: 55.1272 - mae: 5.2727
277/277 [==============================] - 1s 2ms/step - loss: 58.9538 - mae: 5.3448 - val_loss: 91.0750 - val_mae: 6.1820
## Epoch 24/100
## 
  1/277 [..............................] - ETA: 0s - loss: 31.7153 - mae: 5.6316
 31/277 [==>...........................] - ETA: 0s - loss: 43.2026 - mae: 5.3250
 65/277 [======>.......................] - ETA: 0s - loss: 64.3729 - mae: 5.7123
104/277 [==========>...................] - ETA: 0s - loss: 58.1731 - mae: 5.4159
139/277 [==============>...............] - ETA: 0s - loss: 51.1329 - mae: 5.1329
167/277 [=================>............] - ETA: 0s - loss: 55.3936 - mae: 5.2593
188/277 [===================>..........] - ETA: 0s - loss: 60.0168 - mae: 5.4715
197/277 [====================>.........] - ETA: 0s - loss: 58.2379 - mae: 5.4073
205/277 [=====================>........] - ETA: 0s - loss: 58.3833 - mae: 5.3536
212/277 [=====================>........] - ETA: 0s - loss: 57.2453 - mae: 5.3020
233/277 [========================>.....] - ETA: 0s - loss: 60.9489 - mae: 5.3572
262/277 [===========================>..] - ETA: 0s - loss: 60.5837 - mae: 5.4116
277/277 [==============================] - 1s 3ms/step - loss: 59.3487 - mae: 5.3564 - val_loss: 89.3995 - val_mae: 6.0709
## Epoch 25/100
## 
  1/277 [..............................] - ETA: 0s - loss: 36.4818 - mae: 6.0400
 29/277 [==>...........................] - ETA: 0s - loss: 51.9547 - mae: 5.3191
 60/277 [=====>........................] - ETA: 0s - loss: 46.0376 - mae: 5.0957
 95/277 [=========>....................] - ETA: 0s - loss: 49.9508 - mae: 5.4289
129/277 [============>.................] - ETA: 0s - loss: 50.0154 - mae: 5.1632
164/277 [================>.............] - ETA: 0s - loss: 51.4975 - mae: 5.2739
201/277 [====================>.........] - ETA: 0s - loss: 60.4849 - mae: 5.4632
232/277 [========================>.....] - ETA: 0s - loss: 57.8704 - mae: 5.3091
261/277 [===========================>..] - ETA: 0s - loss: 54.9090 - mae: 5.2396
277/277 [==============================] - 1s 2ms/step - loss: 59.4867 - mae: 5.3693 - val_loss: 89.1353 - val_mae: 6.0562
## Epoch 26/100
## 
  1/277 [..............................] - ETA: 0s - loss: 35.8095 - mae: 5.9841
 36/277 [==>...........................] - ETA: 0s - loss: 25.8798 - mae: 3.8250
 67/277 [======>.......................] - ETA: 0s - loss: 50.6494 - mae: 5.2447
 93/277 [=========>....................] - ETA: 0s - loss: 56.5472 - mae: 5.5118
125/277 [============>.................] - ETA: 0s - loss: 51.0360 - mae: 5.2480
160/277 [================>.............] - ETA: 0s - loss: 57.2452 - mae: 5.4617
200/277 [====================>.........] - ETA: 0s - loss: 57.4949 - mae: 5.3369
239/277 [========================>.....] - ETA: 0s - loss: 61.0452 - mae: 5.3933
273/277 [============================>.] - ETA: 0s - loss: 58.9758 - mae: 5.3260
277/277 [==============================] - 1s 2ms/step - loss: 58.6831 - mae: 5.3213 - val_loss: 88.3136 - val_mae: 6.0345
## Epoch 27/100
## 
  1/277 [..............................] - ETA: 0s - loss: 57.0344 - mae: 7.5521
 39/277 [===>..........................] - ETA: 0s - loss: 40.1164 - mae: 4.2888
 78/277 [=======>......................] - ETA: 0s - loss: 71.4417 - mae: 5.5400
106/277 [==========>...................] - ETA: 0s - loss: 65.0630 - mae: 5.4685
127/277 [============>.................] - ETA: 0s - loss: 75.3395 - mae: 5.8089
144/277 [==============>...............] - ETA: 0s - loss: 69.6403 - mae: 5.5999
162/277 [================>.............] - ETA: 0s - loss: 65.4892 - mae: 5.4603
185/277 [===================>..........] - ETA: 0s - loss: 64.2270 - mae: 5.4575
218/277 [======================>.......] - ETA: 0s - loss: 64.8965 - mae: 5.6066
257/277 [==========================>...] - ETA: 0s - loss: 60.7612 - mae: 5.4032
277/277 [==============================] - 1s 2ms/step - loss: 58.5898 - mae: 5.3026 - val_loss: 90.5190 - val_mae: 6.1478
## Epoch 28/100
## 
  1/277 [..............................] - ETA: 0s - loss: 42.8865 - mae: 6.5488
 42/277 [===>..........................] - ETA: 0s - loss: 44.5865 - mae: 4.9140
 81/277 [=======>......................] - ETA: 0s - loss: 67.1038 - mae: 5.7655
113/277 [===========>..................] - ETA: 0s - loss: 72.0104 - mae: 5.8125
146/277 [==============>...............] - ETA: 0s - loss: 67.3980 - mae: 5.6549
184/277 [==================>...........] - ETA: 0s - loss: 61.3175 - mae: 5.3768
221/277 [======================>.......] - ETA: 0s - loss: 61.2513 - mae: 5.2983
256/277 [==========================>...] - ETA: 0s - loss: 60.1071 - mae: 5.2829
277/277 [==============================] - 1s 2ms/step - loss: 58.8507 - mae: 5.2839 - val_loss: 88.5909 - val_mae: 6.0390
## Epoch 29/100
## 
  1/277 [..............................] - ETA: 0s - loss: 72.8576 - mae: 8.5357
 40/277 [===>..........................] - ETA: 0s - loss: 29.8168 - mae: 4.3446
 78/277 [=======>......................] - ETA: 0s - loss: 65.5703 - mae: 5.4785
110/277 [==========>...................] - ETA: 0s - loss: 60.8986 - mae: 5.4456
142/277 [==============>...............] - ETA: 0s - loss: 56.8951 - mae: 5.3133
177/277 [==================>...........] - ETA: 0s - loss: 55.3426 - mae: 5.1852
213/277 [======================>.......] - ETA: 0s - loss: 55.7008 - mae: 5.0816
247/277 [=========================>....] - ETA: 0s - loss: 55.2233 - mae: 5.1567
277/277 [==============================] - 1s 2ms/step - loss: 58.2525 - mae: 5.2989 - val_loss: 89.6183 - val_mae: 6.1004
## Epoch 30/100
## 
  1/277 [..............................] - ETA: 0s - loss: 92.8178 - mae: 9.6342
 38/277 [===>..........................] - ETA: 0s - loss: 49.8727 - mae: 4.9221
 69/277 [======>.......................] - ETA: 0s - loss: 48.5909 - mae: 5.0138
 99/277 [=========>....................] - ETA: 0s - loss: 54.9908 - mae: 5.4460
131/277 [=============>................] - ETA: 0s - loss: 55.2166 - mae: 5.4156
171/277 [=================>............] - ETA: 0s - loss: 52.7007 - mae: 5.2902
205/277 [=====================>........] - ETA: 0s - loss: 48.4763 - mae: 5.0614
241/277 [=========================>....] - ETA: 0s - loss: 54.6512 - mae: 5.1771
277/277 [==============================] - 1s 2ms/step - loss: 58.5629 - mae: 5.2766 - val_loss: 87.7345 - val_mae: 5.9872
## Epoch 31/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.0438 - mae: 0.2092
 38/277 [===>..........................] - ETA: 0s - loss: 67.3844 - mae: 5.2404
 74/277 [=======>......................] - ETA: 0s - loss: 67.5295 - mae: 5.5562
113/277 [===========>..................] - ETA: 0s - loss: 59.8469 - mae: 5.4165
149/277 [===============>..............] - ETA: 0s - loss: 56.2368 - mae: 5.3624
185/277 [===================>..........] - ETA: 0s - loss: 53.9630 - mae: 5.2204
222/277 [=======================>......] - ETA: 0s - loss: 50.4345 - mae: 5.1128
256/277 [==========================>...] - ETA: 0s - loss: 55.5067 - mae: 5.2534
277/277 [==============================] - 1s 2ms/step - loss: 58.4518 - mae: 5.3031 - val_loss: 88.0219 - val_mae: 5.9975
## Epoch 32/100
## 
  1/277 [..............................] - ETA: 0s - loss: 17.7840 - mae: 4.2171
 38/277 [===>..........................] - ETA: 0s - loss: 71.4815 - mae: 5.6563
 76/277 [=======>......................] - ETA: 0s - loss: 55.4132 - mae: 5.1470
117/277 [===========>..................] - ETA: 0s - loss: 58.2147 - mae: 5.3634
153/277 [===============>..............] - ETA: 0s - loss: 55.0822 - mae: 5.1295
188/277 [===================>..........] - ETA: 0s - loss: 51.8501 - mae: 5.0225
227/277 [=======================>......] - ETA: 0s - loss: 56.1524 - mae: 5.2075
264/277 [===========================>..] - ETA: 0s - loss: 59.4908 - mae: 5.3261
277/277 [==============================] - 1s 2ms/step - loss: 58.1015 - mae: 5.2719 - val_loss: 87.7934 - val_mae: 5.9897
## Epoch 33/100
## 
  1/277 [..............................] - ETA: 0s - loss: 4.4875 - mae: 2.1184
 38/277 [===>..........................] - ETA: 0s - loss: 77.2530 - mae: 5.9930
 76/277 [=======>......................] - ETA: 0s - loss: 70.7140 - mae: 6.0912
113/277 [===========>..................] - ETA: 0s - loss: 63.5410 - mae: 5.8383
153/277 [===============>..............] - ETA: 0s - loss: 63.0702 - mae: 5.5884
189/277 [===================>..........] - ETA: 0s - loss: 57.5962 - mae: 5.2922
224/277 [=======================>......] - ETA: 0s - loss: 60.0948 - mae: 5.3641
264/277 [===========================>..] - ETA: 0s - loss: 58.0438 - mae: 5.2308
277/277 [==============================] - 1s 2ms/step - loss: 58.4764 - mae: 5.2832 - val_loss: 88.1504 - val_mae: 6.0189
## Epoch 34/100
## 
  1/277 [..............................] - ETA: 0s - loss: 77.0801 - mae: 8.7795
 36/277 [==>...........................] - ETA: 0s - loss: 86.2519 - mae: 6.3250
 80/277 [=======>......................] - ETA: 0s - loss: 64.8239 - mae: 5.4511
118/277 [===========>..................] - ETA: 0s - loss: 57.4465 - mae: 5.2454
154/277 [===============>..............] - ETA: 0s - loss: 53.9281 - mae: 5.1715
191/277 [===================>..........] - ETA: 0s - loss: 55.0015 - mae: 5.1016
224/277 [=======================>......] - ETA: 0s - loss: 54.4042 - mae: 5.1032
260/277 [===========================>..] - ETA: 0s - loss: 58.0165 - mae: 5.2565
277/277 [==============================] - 1s 2ms/step - loss: 57.3072 - mae: 5.2990 - val_loss: 87.6568 - val_mae: 5.9852
## Epoch 35/100
## 
  1/277 [..............................] - ETA: 0s - loss: 35.4942 - mae: 5.9577
 37/277 [===>..........................] - ETA: 0s - loss: 44.8586 - mae: 5.1091
 75/277 [=======>......................] - ETA: 0s - loss: 44.9240 - mae: 5.0881
113/277 [===========>..................] - ETA: 0s - loss: 52.9135 - mae: 5.1395
152/277 [===============>..............] - ETA: 0s - loss: 55.3328 - mae: 5.1605
190/277 [===================>..........] - ETA: 0s - loss: 55.6933 - mae: 5.0912
229/277 [=======================>......] - ETA: 0s - loss: 61.0110 - mae: 5.2694
266/277 [===========================>..] - ETA: 0s - loss: 58.6089 - mae: 5.2178
277/277 [==============================] - 1s 2ms/step - loss: 57.7776 - mae: 5.1971 - val_loss: 88.8243 - val_mae: 6.0579
## Epoch 36/100
## 
  1/277 [..............................] - ETA: 0s - loss: 134.4067 - mae: 11.5934
 36/277 [==>...........................] - ETA: 0s - loss: 73.3329 - mae: 6.1095  
 77/277 [=======>......................] - ETA: 0s - loss: 67.1707 - mae: 6.0441
114/277 [===========>..................] - ETA: 0s - loss: 60.9414 - mae: 5.6028
147/277 [==============>...............] - ETA: 0s - loss: 69.7676 - mae: 5.7793
180/277 [==================>...........] - ETA: 0s - loss: 69.2524 - mae: 5.5959
211/277 [=====================>........] - ETA: 0s - loss: 64.6170 - mae: 5.4247
244/277 [=========================>....] - ETA: 0s - loss: 59.3909 - mae: 5.2357
277/277 [==============================] - 1s 2ms/step - loss: 57.9905 - mae: 5.2495 - val_loss: 87.6656 - val_mae: 5.9798
## Epoch 37/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.6557 - mae: 0.8097
 32/277 [==>...........................] - ETA: 0s - loss: 77.1869 - mae: 5.7527
 57/277 [=====>........................] - ETA: 0s - loss: 63.6444 - mae: 5.5380
 85/277 [========>.....................] - ETA: 0s - loss: 60.2226 - mae: 5.5078
116/277 [===========>..................] - ETA: 0s - loss: 51.3104 - mae: 5.1392
146/277 [==============>...............] - ETA: 0s - loss: 48.3470 - mae: 4.9202
175/277 [=================>............] - ETA: 0s - loss: 48.9210 - mae: 4.9231
206/277 [=====================>........] - ETA: 0s - loss: 58.1464 - mae: 5.2607
236/277 [========================>.....] - ETA: 0s - loss: 60.2096 - mae: 5.2888
265/277 [===========================>..] - ETA: 0s - loss: 59.9013 - mae: 5.3601
277/277 [==============================] - 1s 2ms/step - loss: 57.8075 - mae: 5.2505 - val_loss: 87.8749 - val_mae: 5.9877
## Epoch 38/100
## 
  1/277 [..............................] - ETA: 0s - loss: 8.1752 - mae: 2.8592
 34/277 [==>...........................] - ETA: 0s - loss: 36.2864 - mae: 4.7459
 66/277 [======>.......................] - ETA: 0s - loss: 60.0328 - mae: 5.6246
 95/277 [=========>....................] - ETA: 0s - loss: 62.9563 - mae: 5.4820
124/277 [============>.................] - ETA: 0s - loss: 64.5519 - mae: 5.5681
151/277 [===============>..............] - ETA: 0s - loss: 60.4609 - mae: 5.4119
180/277 [==================>...........] - ETA: 0s - loss: 63.6329 - mae: 5.4290
212/277 [=====================>........] - ETA: 0s - loss: 60.7366 - mae: 5.3604
242/277 [=========================>....] - ETA: 0s - loss: 58.1808 - mae: 5.2674
273/277 [============================>.] - ETA: 0s - loss: 57.5158 - mae: 5.2764
277/277 [==============================] - 1s 2ms/step - loss: 57.6881 - mae: 5.2946 - val_loss: 87.7492 - val_mae: 5.9794
## Epoch 39/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1.7220 - mae: 1.3122
 38/277 [===>..........................] - ETA: 0s - loss: 40.1984 - mae: 4.7020
 76/277 [=======>......................] - ETA: 0s - loss: 61.6157 - mae: 5.3561
111/277 [===========>..................] - ETA: 0s - loss: 69.2233 - mae: 5.3600
148/277 [===============>..............] - ETA: 0s - loss: 61.1794 - mae: 5.2194
190/277 [===================>..........] - ETA: 0s - loss: 60.5657 - mae: 5.2752
230/277 [=======================>......] - ETA: 0s - loss: 59.2432 - mae: 5.2733
267/277 [===========================>..] - ETA: 0s - loss: 57.1532 - mae: 5.1882
277/277 [==============================] - 1s 2ms/step - loss: 57.5092 - mae: 5.2359 - val_loss: 88.6470 - val_mae: 6.0484
## Epoch 40/100
## 
  1/277 [..............................] - ETA: 0s - loss: 17.6898 - mae: 4.2059
 33/277 [==>...........................] - ETA: 0s - loss: 57.0082 - mae: 5.2721
 70/277 [======>.......................] - ETA: 0s - loss: 48.9822 - mae: 4.9874
105/277 [==========>...................] - ETA: 0s - loss: 68.0196 - mae: 5.4906
141/277 [==============>...............] - ETA: 0s - loss: 60.2327 - mae: 5.2526
176/277 [==================>...........] - ETA: 0s - loss: 60.3131 - mae: 5.2668
201/277 [====================>.........] - ETA: 0s - loss: 59.4042 - mae: 5.3354
229/277 [=======================>......] - ETA: 0s - loss: 56.8381 - mae: 5.2320
263/277 [===========================>..] - ETA: 0s - loss: 58.9363 - mae: 5.3113
277/277 [==============================] - 1s 2ms/step - loss: 57.4515 - mae: 5.2653 - val_loss: 88.2045 - val_mae: 6.0193
## Epoch 41/100
## 
  1/277 [..............................] - ETA: 0s - loss: 11.2698 - mae: 3.3570
 40/277 [===>..........................] - ETA: 0s - loss: 54.1507 - mae: 5.3540
 77/277 [=======>......................] - ETA: 0s - loss: 58.4281 - mae: 4.9964
113/277 [===========>..................] - ETA: 0s - loss: 65.1351 - mae: 5.3062
152/277 [===============>..............] - ETA: 0s - loss: 57.1780 - mae: 4.9819
195/277 [====================>.........] - ETA: 0s - loss: 57.8602 - mae: 5.2243
231/277 [========================>.....] - ETA: 0s - loss: 62.7489 - mae: 5.5072
266/277 [===========================>..] - ETA: 0s - loss: 59.2836 - mae: 5.3499
277/277 [==============================] - 1s 2ms/step - loss: 57.4513 - mae: 5.2501 - val_loss: 87.0614 - val_mae: 5.9509
## Epoch 42/100
## 
  1/277 [..............................] - ETA: 0s - loss: 9.7035 - mae: 3.1150
 39/277 [===>..........................] - ETA: 0s - loss: 51.2894 - mae: 5.6680
 77/277 [=======>......................] - ETA: 0s - loss: 80.4619 - mae: 6.3475
108/277 [==========>...................] - ETA: 0s - loss: 67.5197 - mae: 5.6747
138/277 [=============>................] - ETA: 0s - loss: 61.9778 - mae: 5.4573
174/277 [=================>............] - ETA: 0s - loss: 65.4230 - mae: 5.4584
208/277 [=====================>........] - ETA: 0s - loss: 60.8774 - mae: 5.3569
244/277 [=========================>....] - ETA: 0s - loss: 57.2851 - mae: 5.2572
275/277 [============================>.] - ETA: 0s - loss: 55.1560 - mae: 5.1726
277/277 [==============================] - 1s 2ms/step - loss: 57.5231 - mae: 5.2753 - val_loss: 87.5765 - val_mae: 5.9549
## Epoch 43/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1176.3610 - mae: 34.2981
 41/277 [===>..........................] - ETA: 0s - loss: 78.2336 - mae: 6.1417   
 77/277 [=======>......................] - ETA: 0s - loss: 68.5236 - mae: 5.9675
110/277 [==========>...................] - ETA: 0s - loss: 61.9956 - mae: 5.6389
149/277 [===============>..............] - ETA: 0s - loss: 58.2814 - mae: 5.4783
184/277 [==================>...........] - ETA: 0s - loss: 61.0736 - mae: 5.4994
220/277 [======================>.......] - ETA: 0s - loss: 64.0014 - mae: 5.4886
258/277 [==========================>...] - ETA: 0s - loss: 59.8799 - mae: 5.3561
277/277 [==============================] - 1s 2ms/step - loss: 57.4418 - mae: 5.2422 - val_loss: 87.7055 - val_mae: 5.9650
## Epoch 44/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.6025 - mae: 0.7762
 41/277 [===>..........................] - ETA: 0s - loss: 45.9951 - mae: 4.8950
 82/277 [=======>......................] - ETA: 0s - loss: 43.6092 - mae: 4.7256
118/277 [===========>..................] - ETA: 0s - loss: 53.7457 - mae: 4.9897
152/277 [===============>..............] - ETA: 0s - loss: 63.3803 - mae: 5.2121
190/277 [===================>..........] - ETA: 0s - loss: 60.8902 - mae: 5.2061
222/277 [=======================>......] - ETA: 0s - loss: 55.8021 - mae: 5.0481
251/277 [==========================>...] - ETA: 0s - loss: 55.6088 - mae: 5.0996
277/277 [==============================] - 1s 2ms/step - loss: 57.3952 - mae: 5.2363 - val_loss: 88.1010 - val_mae: 6.0025
## Epoch 45/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.9426 - mae: 0.9709
 32/277 [==>...........................] - ETA: 0s - loss: 58.5807 - mae: 5.8696
 54/277 [====>.........................] - ETA: 0s - loss: 47.9849 - mae: 5.0811
 74/277 [=======>......................] - ETA: 0s - loss: 45.2415 - mae: 5.0153
 96/277 [=========>....................] - ETA: 0s - loss: 59.1902 - mae: 5.4514
120/277 [===========>..................] - ETA: 0s - loss: 70.7545 - mae: 5.7870
144/277 [==============>...............] - ETA: 0s - loss: 63.0864 - mae: 5.4365
170/277 [=================>............] - ETA: 0s - loss: 62.5363 - mae: 5.4558
200/277 [====================>.........] - ETA: 0s - loss: 65.7890 - mae: 5.5768
228/277 [=======================>......] - ETA: 0s - loss: 61.4734 - mae: 5.4495
258/277 [==========================>...] - ETA: 0s - loss: 57.9451 - mae: 5.2820
277/277 [==============================] - 1s 3ms/step - loss: 57.2738 - mae: 5.2316 - val_loss: 87.9570 - val_mae: 5.9966
## Epoch 46/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.3957 - mae: 0.6291
 31/277 [==>...........................] - ETA: 0s - loss: 33.5879 - mae: 3.9836
 62/277 [=====>........................] - ETA: 0s - loss: 40.8066 - mae: 4.7937
 91/277 [========>.....................] - ETA: 0s - loss: 54.6632 - mae: 5.1234
119/277 [===========>..................] - ETA: 0s - loss: 64.1405 - mae: 5.4765
149/277 [===============>..............] - ETA: 0s - loss: 55.3786 - mae: 5.0856
182/277 [==================>...........] - ETA: 0s - loss: 56.0819 - mae: 5.2335
213/277 [======================>.......] - ETA: 0s - loss: 54.9238 - mae: 5.2052
242/277 [=========================>....] - ETA: 0s - loss: 54.1862 - mae: 5.2005
272/277 [============================>.] - ETA: 0s - loss: 55.8447 - mae: 5.2046
277/277 [==============================] - 1s 2ms/step - loss: 57.2073 - mae: 5.2649 - val_loss: 87.4374 - val_mae: 5.9418
## Epoch 47/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1.0836 - mae: 1.0409
 30/277 [==>...........................] - ETA: 0s - loss: 50.7066 - mae: 5.1440
 60/277 [=====>........................] - ETA: 0s - loss: 73.6922 - mae: 5.8286
 90/277 [========>.....................] - ETA: 0s - loss: 78.5792 - mae: 6.0502
123/277 [============>.................] - ETA: 0s - loss: 78.7465 - mae: 5.9769
160/277 [================>.............] - ETA: 0s - loss: 68.3259 - mae: 5.5892
189/277 [===================>..........] - ETA: 0s - loss: 64.0287 - mae: 5.4208
216/277 [======================>.......] - ETA: 0s - loss: 61.7838 - mae: 5.3744
243/277 [=========================>....] - ETA: 0s - loss: 60.6352 - mae: 5.3943
273/277 [============================>.] - ETA: 0s - loss: 57.7953 - mae: 5.2982
277/277 [==============================] - 1s 2ms/step - loss: 57.1448 - mae: 5.2595 - val_loss: 87.7079 - val_mae: 5.9534
## Epoch 48/100
## 
  1/277 [..............................] - ETA: 0s - loss: 4.2698 - mae: 2.0664
 36/277 [==>...........................] - ETA: 0s - loss: 30.3668 - mae: 4.2579
 73/277 [======>.......................] - ETA: 0s - loss: 48.9670 - mae: 5.0408
113/277 [===========>..................] - ETA: 0s - loss: 71.6630 - mae: 5.7806
149/277 [===============>..............] - ETA: 0s - loss: 68.0546 - mae: 5.8177
184/277 [==================>...........] - ETA: 0s - loss: 62.9085 - mae: 5.6683
222/277 [=======================>......] - ETA: 0s - loss: 64.6344 - mae: 5.5765
258/277 [==========================>...] - ETA: 0s - loss: 58.3462 - mae: 5.2429
277/277 [==============================] - 1s 2ms/step - loss: 57.1967 - mae: 5.2285 - val_loss: 87.5092 - val_mae: 5.9743
## Epoch 49/100
## 
  1/277 [..............................] - ETA: 0s - loss: 5.2990 - mae: 2.3020
 36/277 [==>...........................] - ETA: 0s - loss: 32.9564 - mae: 4.0380
 71/277 [======>.......................] - ETA: 0s - loss: 47.6760 - mae: 4.8324
111/277 [===========>..................] - ETA: 0s - loss: 60.3016 - mae: 5.3745
146/277 [==============>...............] - ETA: 0s - loss: 59.0047 - mae: 5.3799
181/277 [==================>...........] - ETA: 0s - loss: 58.2967 - mae: 5.2758
221/277 [======================>.......] - ETA: 0s - loss: 57.0120 - mae: 5.2546
257/277 [==========================>...] - ETA: 0s - loss: 58.1452 - mae: 5.2433
277/277 [==============================] - 1s 2ms/step - loss: 56.9222 - mae: 5.2174 - val_loss: 87.0356 - val_mae: 5.9497
## Epoch 50/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1315.5459 - mae: 36.2705
 37/277 [===>..........................] - ETA: 0s - loss: 80.5443 - mae: 6.2939   
 71/277 [======>.......................] - ETA: 0s - loss: 65.8909 - mae: 5.7512
106/277 [==========>...................] - ETA: 0s - loss: 59.6626 - mae: 5.3121
140/277 [==============>...............] - ETA: 0s - loss: 57.2236 - mae: 5.2711
174/277 [=================>............] - ETA: 0s - loss: 53.2043 - mae: 5.0437
209/277 [=====================>........] - ETA: 0s - loss: 48.4101 - mae: 4.8428
245/277 [=========================>....] - ETA: 0s - loss: 49.2861 - mae: 4.9731
277/277 [==============================] - 1s 2ms/step - loss: 56.8748 - mae: 5.2285 - val_loss: 87.5985 - val_mae: 5.9933
## Epoch 51/100
## 
  1/277 [..............................] - ETA: 0s - loss: 4.9631 - mae: 2.2278
 37/277 [===>..........................] - ETA: 0s - loss: 108.8634 - mae: 7.0766
 72/277 [======>.......................] - ETA: 0s - loss: 76.8223 - mae: 6.1664 
100/277 [=========>....................] - ETA: 0s - loss: 69.2379 - mae: 5.9951
123/277 [============>.................] - ETA: 0s - loss: 61.6896 - mae: 5.6591
156/277 [===============>..............] - ETA: 0s - loss: 60.6817 - mae: 5.5181
190/277 [===================>..........] - ETA: 0s - loss: 55.9716 - mae: 5.2425
222/277 [=======================>......] - ETA: 0s - loss: 57.5456 - mae: 5.2843
258/277 [==========================>...] - ETA: 0s - loss: 53.9121 - mae: 5.1830
277/277 [==============================] - 1s 2ms/step - loss: 56.7964 - mae: 5.2518 - val_loss: 88.7175 - val_mae: 6.0629
## Epoch 52/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.2574 - mae: 0.5073
 31/277 [==>...........................] - ETA: 0s - loss: 69.2276 - mae: 5.7438
 61/277 [=====>........................] - ETA: 0s - loss: 102.5825 - mae: 6.5023
 93/277 [=========>....................] - ETA: 0s - loss: 82.9357 - mae: 5.7416 
126/277 [============>.................] - ETA: 0s - loss: 77.7548 - mae: 5.7557
163/277 [================>.............] - ETA: 0s - loss: 72.8385 - mae: 5.7439
202/277 [====================>.........] - ETA: 0s - loss: 65.4831 - mae: 5.5432
239/277 [========================>.....] - ETA: 0s - loss: 59.0440 - mae: 5.2485
277/277 [==============================] - ETA: 0s - loss: 56.4294 - mae: 5.2293
277/277 [==============================] - 1s 2ms/step - loss: 56.4294 - mae: 5.2293 - val_loss: 87.1404 - val_mae: 5.9369
## Epoch 53/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2.1208 - mae: 1.4563
 41/277 [===>..........................] - ETA: 0s - loss: 42.4452 - mae: 4.8939
 74/277 [=======>......................] - ETA: 0s - loss: 41.0402 - mae: 4.7868
111/277 [===========>..................] - ETA: 0s - loss: 38.6623 - mae: 4.8461
153/277 [===============>..............] - ETA: 0s - loss: 47.3578 - mae: 4.9643
191/277 [===================>..........] - ETA: 0s - loss: 48.4630 - mae: 5.0033
229/277 [=======================>......] - ETA: 0s - loss: 48.7854 - mae: 4.9522
269/277 [============================>.] - ETA: 0s - loss: 56.7688 - mae: 5.1865
277/277 [==============================] - 1s 2ms/step - loss: 57.3551 - mae: 5.2138 - val_loss: 86.8590 - val_mae: 5.9227
## Epoch 54/100
## 
  1/277 [..............................] - ETA: 0s - loss: 28.5087 - mae: 5.3394
 39/277 [===>..........................] - ETA: 0s - loss: 84.2244 - mae: 5.8083
 76/277 [=======>......................] - ETA: 0s - loss: 74.4817 - mae: 5.7482
112/277 [===========>..................] - ETA: 0s - loss: 67.2509 - mae: 5.7381
149/277 [===============>..............] - ETA: 0s - loss: 57.3397 - mae: 5.3447
185/277 [===================>..........] - ETA: 0s - loss: 61.8517 - mae: 5.5226
221/277 [======================>.......] - ETA: 0s - loss: 59.8668 - mae: 5.3388
263/277 [===========================>..] - ETA: 0s - loss: 57.8517 - mae: 5.2388
277/277 [==============================] - 1s 2ms/step - loss: 56.8211 - mae: 5.2041 - val_loss: 86.9620 - val_mae: 5.9470
## Epoch 55/100
## 
  1/277 [..............................] - ETA: 0s - loss: 265.9478 - mae: 16.3079
 41/277 [===>..........................] - ETA: 0s - loss: 32.4446 - mae: 4.2118  
 76/277 [=======>......................] - ETA: 0s - loss: 47.2654 - mae: 4.8178
111/277 [===========>..................] - ETA: 0s - loss: 55.7798 - mae: 5.3151
152/277 [===============>..............] - ETA: 0s - loss: 62.0218 - mae: 5.4214
189/277 [===================>..........] - ETA: 0s - loss: 57.7103 - mae: 5.3007
223/277 [=======================>......] - ETA: 0s - loss: 56.8266 - mae: 5.3135
260/277 [===========================>..] - ETA: 0s - loss: 59.0778 - mae: 5.3408
277/277 [==============================] - 1s 2ms/step - loss: 56.9622 - mae: 5.2548 - val_loss: 86.9486 - val_mae: 5.9324
## Epoch 56/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1.3848 - mae: 1.1768
 29/277 [==>...........................] - ETA: 0s - loss: 43.1497 - mae: 4.9997
 57/277 [=====>........................] - ETA: 0s - loss: 33.9924 - mae: 4.5429
 85/277 [========>.....................] - ETA: 0s - loss: 36.0229 - mae: 4.7829
113/277 [===========>..................] - ETA: 0s - loss: 42.3805 - mae: 5.0688
146/277 [==============>...............] - ETA: 0s - loss: 44.9885 - mae: 5.0713
188/277 [===================>..........] - ETA: 0s - loss: 48.2924 - mae: 4.9537
226/277 [=======================>......] - ETA: 0s - loss: 52.0743 - mae: 5.1170
264/277 [===========================>..] - ETA: 0s - loss: 58.6451 - mae: 5.3132
277/277 [==============================] - 1s 2ms/step - loss: 56.8219 - mae: 5.2121 - val_loss: 87.2013 - val_mae: 5.9749
## Epoch 57/100
## 
  1/277 [..............................] - ETA: 0s - loss: 6.9844 - mae: 2.6428
 37/277 [===>..........................] - ETA: 0s - loss: 51.9718 - mae: 4.7963
 75/277 [=======>......................] - ETA: 0s - loss: 52.2554 - mae: 4.7682
108/277 [==========>...................] - ETA: 0s - loss: 46.9857 - mae: 4.7017
142/277 [==============>...............] - ETA: 0s - loss: 48.8607 - mae: 5.0328
178/277 [==================>...........] - ETA: 0s - loss: 47.4135 - mae: 5.0118
212/277 [=====================>........] - ETA: 0s - loss: 54.3890 - mae: 5.2244
243/277 [=========================>....] - ETA: 0s - loss: 57.3801 - mae: 5.2156
272/277 [============================>.] - ETA: 0s - loss: 57.0109 - mae: 5.2220
277/277 [==============================] - 1s 2ms/step - loss: 56.8858 - mae: 5.2290 - val_loss: 86.9916 - val_mae: 5.9312
## Epoch 58/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1.3519 - mae: 1.1627
 32/277 [==>...........................] - ETA: 0s - loss: 58.4041 - mae: 5.5341
 67/277 [======>.......................] - ETA: 0s - loss: 54.4853 - mae: 5.4887
104/277 [==========>...................] - ETA: 0s - loss: 60.0420 - mae: 5.4426
140/277 [==============>...............] - ETA: 0s - loss: 59.8065 - mae: 5.3554
176/277 [==================>...........] - ETA: 0s - loss: 56.0165 - mae: 5.2587
211/277 [=====================>........] - ETA: 0s - loss: 54.9491 - mae: 5.2033
240/277 [========================>.....] - ETA: 0s - loss: 58.9216 - mae: 5.2942
268/277 [============================>.] - ETA: 0s - loss: 56.9971 - mae: 5.1846
277/277 [==============================] - 1s 2ms/step - loss: 56.7490 - mae: 5.2138 - val_loss: 87.1137 - val_mae: 5.9591
## Epoch 59/100
## 
  1/277 [..............................] - ETA: 0s - loss: 17.0087 - mae: 4.1242
 31/277 [==>...........................] - ETA: 0s - loss: 70.7701 - mae: 5.7022
 62/277 [=====>........................] - ETA: 0s - loss: 69.5896 - mae: 5.8660
 95/277 [=========>....................] - ETA: 0s - loss: 64.9976 - mae: 5.7331
126/277 [============>.................] - ETA: 0s - loss: 61.4049 - mae: 5.3999
158/277 [================>.............] - ETA: 0s - loss: 68.9643 - mae: 5.4831
188/277 [===================>..........] - ETA: 0s - loss: 63.5562 - mae: 5.3362
207/277 [=====================>........] - ETA: 0s - loss: 61.1886 - mae: 5.2921
227/277 [=======================>......] - ETA: 0s - loss: 58.5898 - mae: 5.2292
250/277 [==========================>...] - ETA: 0s - loss: 58.3933 - mae: 5.2749
277/277 [==============================] - ETA: 0s - loss: 56.5469 - mae: 5.2540
277/277 [==============================] - 1s 2ms/step - loss: 56.5469 - mae: 5.2540 - val_loss: 87.7696 - val_mae: 5.9697
## Epoch 60/100
## 
  1/277 [..............................] - ETA: 0s - loss: 23.6274 - mae: 4.8608
 29/277 [==>...........................] - ETA: 0s - loss: 36.3173 - mae: 4.5905
 58/277 [=====>........................] - ETA: 0s - loss: 64.2490 - mae: 5.3835
 93/277 [=========>....................] - ETA: 0s - loss: 49.6535 - mae: 4.6993
128/277 [============>.................] - ETA: 0s - loss: 51.7118 - mae: 4.8466
168/277 [=================>............] - ETA: 0s - loss: 60.9307 - mae: 5.2886
208/277 [=====================>........] - ETA: 0s - loss: 60.9622 - mae: 5.4208
241/277 [=========================>....] - ETA: 0s - loss: 58.1299 - mae: 5.2366
269/277 [============================>.] - ETA: 0s - loss: 56.8301 - mae: 5.1893
277/277 [==============================] - 1s 2ms/step - loss: 56.4947 - mae: 5.1745 - val_loss: 86.9334 - val_mae: 5.9511
## Epoch 61/100
## 
  1/277 [..............................] - ETA: 0s - loss: 64.2592 - mae: 8.0162
 36/277 [==>...........................] - ETA: 0s - loss: 22.2756 - mae: 3.5150
 71/277 [======>.......................] - ETA: 0s - loss: 71.1273 - mae: 5.3632
103/277 [==========>...................] - ETA: 0s - loss: 66.3262 - mae: 5.1937
136/277 [=============>................] - ETA: 0s - loss: 57.5419 - mae: 5.0021
174/277 [=================>............] - ETA: 0s - loss: 59.8636 - mae: 5.3055
210/277 [=====================>........] - ETA: 0s - loss: 57.1817 - mae: 5.0939
247/277 [=========================>....] - ETA: 0s - loss: 56.9289 - mae: 5.2198
277/277 [==============================] - 1s 2ms/step - loss: 57.0253 - mae: 5.2476 - val_loss: 87.1181 - val_mae: 5.9372
## Epoch 62/100
## 
  1/277 [..............................] - ETA: 0s - loss: 54.8759 - mae: 7.4078
 38/277 [===>..........................] - ETA: 0s - loss: 123.6667 - mae: 7.2089
 76/277 [=======>......................] - ETA: 0s - loss: 87.2842 - mae: 6.2886 
116/277 [===========>..................] - ETA: 0s - loss: 66.4762 - mae: 5.5100
153/277 [===============>..............] - ETA: 0s - loss: 61.2599 - mae: 5.4852
192/277 [===================>..........] - ETA: 0s - loss: 59.2901 - mae: 5.3215
231/277 [========================>.....] - ETA: 0s - loss: 56.4780 - mae: 5.1462
267/277 [===========================>..] - ETA: 0s - loss: 56.8461 - mae: 5.2216
277/277 [==============================] - 1s 2ms/step - loss: 56.9072 - mae: 5.2492 - val_loss: 88.2166 - val_mae: 6.0333
## Epoch 63/100
## 
  1/277 [..............................] - ETA: 0s - loss: 60.5800 - mae: 7.7833
 39/277 [===>..........................] - ETA: 0s - loss: 54.5563 - mae: 4.8669
 75/277 [=======>......................] - ETA: 0s - loss: 49.8065 - mae: 4.7256
115/277 [===========>..................] - ETA: 0s - loss: 51.2773 - mae: 4.9508
153/277 [===============>..............] - ETA: 0s - loss: 59.9294 - mae: 5.2191
187/277 [===================>..........] - ETA: 0s - loss: 66.0444 - mae: 5.4265
221/277 [======================>.......] - ETA: 0s - loss: 60.7590 - mae: 5.3047
243/277 [=========================>....] - ETA: 0s - loss: 57.8017 - mae: 5.2070
269/277 [============================>.] - ETA: 0s - loss: 57.5379 - mae: 5.2267
277/277 [==============================] - 1s 2ms/step - loss: 57.0174 - mae: 5.2231 - val_loss: 87.3554 - val_mae: 5.9603
## Epoch 64/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.3662 - mae: 0.6052
 25/277 [=>............................] - ETA: 0s - loss: 66.6618 - mae: 6.2446
 53/277 [====>.........................] - ETA: 0s - loss: 46.6132 - mae: 5.0786
 83/277 [=======>......................] - ETA: 0s - loss: 37.0920 - mae: 4.5588
113/277 [===========>..................] - ETA: 0s - loss: 37.6642 - mae: 4.5787
144/277 [==============>...............] - ETA: 0s - loss: 38.4916 - mae: 4.6229
171/277 [=================>............] - ETA: 0s - loss: 49.2565 - mae: 4.8999
196/277 [====================>.........] - ETA: 0s - loss: 51.5091 - mae: 5.0578
224/277 [=======================>......] - ETA: 0s - loss: 54.9516 - mae: 5.2105
255/277 [==========================>...] - ETA: 0s - loss: 56.9348 - mae: 5.1838
277/277 [==============================] - 1s 3ms/step - loss: 56.3386 - mae: 5.1955 - val_loss: 87.5961 - val_mae: 5.9796
## Epoch 65/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.1004 - mae: 0.3169
 25/277 [=>............................] - ETA: 0s - loss: 89.3571 - mae: 5.6464
 49/277 [====>.........................] - ETA: 0s - loss: 95.1130 - mae: 6.0392
 77/277 [=======>......................] - ETA: 0s - loss: 77.0982 - mae: 5.8199
102/277 [==========>...................] - ETA: 0s - loss: 77.3197 - mae: 5.8605
127/277 [============>.................] - ETA: 0s - loss: 79.3247 - mae: 6.0580
154/277 [===============>..............] - ETA: 0s - loss: 71.5094 - mae: 5.7948
183/277 [==================>...........] - ETA: 0s - loss: 69.7361 - mae: 5.6154
210/277 [=====================>........] - ETA: 0s - loss: 65.2752 - mae: 5.4623
237/277 [========================>.....] - ETA: 0s - loss: 62.2963 - mae: 5.4493
262/277 [===========================>..] - ETA: 0s - loss: 58.4535 - mae: 5.2820
277/277 [==============================] - 1s 3ms/step - loss: 56.4768 - mae: 5.2084 - val_loss: 86.7283 - val_mae: 5.9187
## Epoch 66/100
## 
  1/277 [..............................] - ETA: 0s - loss: 135.8277 - mae: 11.6545
 35/277 [==>...........................] - ETA: 0s - loss: 47.6471 - mae: 5.2540  
 67/277 [======>.......................] - ETA: 0s - loss: 47.1827 - mae: 5.3232
 95/277 [=========>....................] - ETA: 0s - loss: 56.9516 - mae: 5.7439
130/277 [=============>................] - ETA: 0s - loss: 58.3023 - mae: 5.4499
167/277 [=================>............] - ETA: 0s - loss: 53.7259 - mae: 5.2619
202/277 [====================>.........] - ETA: 0s - loss: 58.7869 - mae: 5.3660
234/277 [========================>.....] - ETA: 0s - loss: 54.9654 - mae: 5.1285
260/277 [===========================>..] - ETA: 0s - loss: 56.6571 - mae: 5.1720
277/277 [==============================] - 1s 2ms/step - loss: 57.0677 - mae: 5.2031 - val_loss: 87.3194 - val_mae: 5.9707
## Epoch 67/100
## 
  1/277 [..............................] - ETA: 0s - loss: 17.5864 - mae: 4.1936
 31/277 [==>...........................] - ETA: 0s - loss: 46.5364 - mae: 4.3005
 60/277 [=====>........................] - ETA: 0s - loss: 46.1346 - mae: 4.7059
 78/277 [=======>......................] - ETA: 0s - loss: 49.0744 - mae: 5.0611
 93/277 [=========>....................] - ETA: 0s - loss: 46.0926 - mae: 4.9109
109/277 [==========>...................] - ETA: 0s - loss: 54.5777 - mae: 5.1468
125/277 [============>.................] - ETA: 0s - loss: 55.8392 - mae: 5.1715
146/277 [==============>...............] - ETA: 0s - loss: 53.5374 - mae: 5.1201
170/277 [=================>............] - ETA: 0s - loss: 49.1939 - mae: 4.8805
196/277 [====================>.........] - ETA: 0s - loss: 48.8462 - mae: 4.8226
219/277 [======================>.......] - ETA: 0s - loss: 46.3437 - mae: 4.7246
246/277 [=========================>....] - ETA: 0s - loss: 55.1400 - mae: 5.1123
275/277 [============================>.] - ETA: 0s - loss: 55.0821 - mae: 5.1283
277/277 [==============================] - 1s 3ms/step - loss: 56.3971 - mae: 5.2025 - val_loss: 87.3357 - val_mae: 5.9398
## Epoch 68/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1.2364 - mae: 1.1119
 32/277 [==>...........................] - ETA: 0s - loss: 47.6557 - mae: 5.6957
 68/277 [======>.......................] - ETA: 0s - loss: 54.9459 - mae: 5.7608
102/277 [==========>...................] - ETA: 0s - loss: 60.9561 - mae: 5.6299
136/277 [=============>................] - ETA: 0s - loss: 52.3271 - mae: 5.1705
164/277 [================>.............] - ETA: 0s - loss: 54.4770 - mae: 5.2984
189/277 [===================>..........] - ETA: 0s - loss: 59.0057 - mae: 5.4389
218/277 [======================>.......] - ETA: 0s - loss: 57.6317 - mae: 5.3048
256/277 [==========================>...] - ETA: 0s - loss: 55.8124 - mae: 5.2002
277/277 [==============================] - 1s 2ms/step - loss: 56.7936 - mae: 5.2103 - val_loss: 86.6269 - val_mae: 5.9133
## Epoch 69/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1.3160 - mae: 1.1472
 40/277 [===>..........................] - ETA: 0s - loss: 70.8765 - mae: 5.6519
 78/277 [=======>......................] - ETA: 0s - loss: 53.5099 - mae: 5.0608
109/277 [==========>...................] - ETA: 0s - loss: 53.6070 - mae: 5.0938
129/277 [============>.................] - ETA: 0s - loss: 49.8411 - mae: 4.9348
150/277 [===============>..............] - ETA: 0s - loss: 55.8135 - mae: 5.0906
171/277 [=================>............] - ETA: 0s - loss: 55.0332 - mae: 5.0857
192/277 [===================>..........] - ETA: 0s - loss: 53.9870 - mae: 5.0734
212/277 [=====================>........] - ETA: 0s - loss: 56.6599 - mae: 5.2064
233/277 [========================>.....] - ETA: 0s - loss: 55.1160 - mae: 5.1720
255/277 [==========================>...] - ETA: 0s - loss: 55.8853 - mae: 5.2642
277/277 [==============================] - ETA: 0s - loss: 56.7869 - mae: 5.2437
277/277 [==============================] - 1s 3ms/step - loss: 56.7869 - mae: 5.2437 - val_loss: 87.0639 - val_mae: 5.9311
## Epoch 70/100
## 
  1/277 [..............................] - ETA: 0s - loss: 67.5942 - mae: 8.2216
 19/277 [=>............................] - ETA: 0s - loss: 99.0065 - mae: 6.8037
 38/277 [===>..........................] - ETA: 0s - loss: 69.6356 - mae: 5.8503
 59/277 [=====>........................] - ETA: 0s - loss: 50.4829 - mae: 4.8750
 77/277 [=======>......................] - ETA: 0s - loss: 61.0709 - mae: 5.2281
 94/277 [=========>....................] - ETA: 0s - loss: 62.5336 - mae: 5.3876
113/277 [===========>..................] - ETA: 0s - loss: 63.9863 - mae: 5.4784
129/277 [============>.................] - ETA: 0s - loss: 62.3070 - mae: 5.4657
140/277 [==============>...............] - ETA: 0s - loss: 59.4244 - mae: 5.3122
152/277 [===============>..............] - ETA: 0s - loss: 59.6233 - mae: 5.3122
165/277 [================>.............] - ETA: 0s - loss: 58.6410 - mae: 5.3098
181/277 [==================>...........] - ETA: 0s - loss: 56.9167 - mae: 5.2627
196/277 [====================>.........] - ETA: 0s - loss: 55.1842 - mae: 5.2032
213/277 [======================>.......] - ETA: 0s - loss: 53.5415 - mae: 5.1614
236/277 [========================>.....] - ETA: 0s - loss: 51.5526 - mae: 5.0566
264/277 [===========================>..] - ETA: 0s - loss: 55.7036 - mae: 5.1900
277/277 [==============================] - 1s 4ms/step - loss: 56.0338 - mae: 5.2218 - val_loss: 87.2926 - val_mae: 5.9257
## Epoch 71/100
## 
  1/277 [..............................] - ETA: 0s - loss: 29.2003 - mae: 5.4037
 17/277 [>.............................] - ETA: 0s - loss: 213.5534 - mae: 9.7684
 33/277 [==>...........................] - ETA: 0s - loss: 137.3250 - mae: 7.9741
 55/277 [====>.........................] - ETA: 0s - loss: 92.8613 - mae: 6.3913 
 73/277 [======>.......................] - ETA: 0s - loss: 80.5989 - mae: 6.0792
 90/277 [========>.....................] - ETA: 0s - loss: 77.6902 - mae: 6.0774
110/277 [==========>...................] - ETA: 0s - loss: 70.6421 - mae: 5.7387
138/277 [=============>................] - ETA: 0s - loss: 62.9820 - mae: 5.4984
169/277 [=================>............] - ETA: 0s - loss: 57.8607 - mae: 5.2397
204/277 [=====================>........] - ETA: 0s - loss: 59.5522 - mae: 5.2668
240/277 [========================>.....] - ETA: 0s - loss: 58.4821 - mae: 5.2329
271/277 [============================>.] - ETA: 0s - loss: 57.0533 - mae: 5.2374
277/277 [==============================] - 1s 4ms/step - loss: 56.6575 - mae: 5.2256 - val_loss: 86.2501 - val_mae: 5.8989
## Epoch 72/100
## 
  1/277 [..............................] - ETA: 0s - loss: 11.4958 - mae: 3.3905
 16/277 [>.............................] - ETA: 0s - loss: 112.6207 - mae: 7.4655
 36/277 [==>...........................] - ETA: 0s - loss: 101.8548 - mae: 7.1242
 49/277 [====>.........................] - ETA: 0s - loss: 106.4128 - mae: 6.5922
 65/277 [======>.......................] - ETA: 0s - loss: 90.0511 - mae: 6.1491 
 77/277 [=======>......................] - ETA: 0s - loss: 83.1521 - mae: 5.9800
 92/277 [========>.....................] - ETA: 0s - loss: 78.7729 - mae: 5.8485
104/277 [==========>...................] - ETA: 0s - loss: 73.6024 - mae: 5.7447
124/277 [============>.................] - ETA: 0s - loss: 72.2609 - mae: 5.7127
146/277 [==============>...............] - ETA: 0s - loss: 68.7622 - mae: 5.6421
163/277 [================>.............] - ETA: 0s - loss: 66.1087 - mae: 5.5233
188/277 [===================>..........] - ETA: 0s - loss: 64.5747 - mae: 5.4911
206/277 [=====================>........] - ETA: 0s - loss: 61.9449 - mae: 5.4383
220/277 [======================>.......] - ETA: 0s - loss: 60.7889 - mae: 5.4066
233/277 [========================>.....] - ETA: 0s - loss: 59.0661 - mae: 5.3380
246/277 [=========================>....] - ETA: 0s - loss: 57.3829 - mae: 5.2678
258/277 [==========================>...] - ETA: 0s - loss: 57.6428 - mae: 5.2685
272/277 [============================>.] - ETA: 0s - loss: 57.0718 - mae: 5.2677
277/277 [==============================] - 1s 4ms/step - loss: 56.3537 - mae: 5.2373 - val_loss: 86.7351 - val_mae: 5.9268
## Epoch 73/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2.6686 - mae: 1.6336
 20/277 [=>............................] - ETA: 0s - loss: 22.0287 - mae: 2.7322
 34/277 [==>...........................] - ETA: 0s - loss: 32.8169 - mae: 3.7681
 46/277 [===>..........................] - ETA: 0s - loss: 38.1917 - mae: 4.0683
 58/277 [=====>........................] - ETA: 0s - loss: 34.7648 - mae: 4.0240
 72/277 [======>.......................] - ETA: 0s - loss: 43.1875 - mae: 4.3458
 88/277 [========>.....................] - ETA: 0s - loss: 47.3236 - mae: 4.6543
109/277 [==========>...................] - ETA: 0s - loss: 58.9019 - mae: 5.0108
135/277 [=============>................] - ETA: 0s - loss: 58.7972 - mae: 5.1351
170/277 [=================>............] - ETA: 0s - loss: 52.3750 - mae: 4.9491
205/277 [=====================>........] - ETA: 0s - loss: 51.5026 - mae: 4.9923
237/277 [========================>.....] - ETA: 0s - loss: 54.1076 - mae: 5.1008
273/277 [============================>.] - ETA: 0s - loss: 55.7810 - mae: 5.2118
277/277 [==============================] - 1s 3ms/step - loss: 56.3585 - mae: 5.2352 - val_loss: 87.1710 - val_mae: 5.9783
## Epoch 74/100
## 
  1/277 [..............................] - ETA: 0s - loss: 22.3514 - mae: 4.7277
 23/277 [=>............................] - ETA: 0s - loss: 112.7986 - mae: 7.3221
 36/277 [==>...........................] - ETA: 0s - loss: 91.4521 - mae: 6.6866 
 48/277 [====>.........................] - ETA: 0s - loss: 71.3514 - mae: 5.7338
 60/277 [=====>........................] - ETA: 0s - loss: 69.8270 - mae: 5.8131
 74/277 [=======>......................] - ETA: 0s - loss: 63.0433 - mae: 5.6066
 94/277 [=========>....................] - ETA: 0s - loss: 60.6803 - mae: 5.5014
115/277 [===========>..................] - ETA: 0s - loss: 51.9927 - mae: 5.0321
133/277 [=============>................] - ETA: 0s - loss: 62.1836 - mae: 5.3204
148/277 [===============>..............] - ETA: 0s - loss: 59.5036 - mae: 5.2430
166/277 [================>.............] - ETA: 0s - loss: 62.3913 - mae: 5.3422
181/277 [==================>...........] - ETA: 0s - loss: 58.4282 - mae: 5.1549
194/277 [====================>.........] - ETA: 0s - loss: 57.9755 - mae: 5.1891
210/277 [=====================>........] - ETA: 0s - loss: 55.1741 - mae: 5.0612
227/277 [=======================>......] - ETA: 0s - loss: 55.6973 - mae: 5.1643
241/277 [=========================>....] - ETA: 0s - loss: 55.7645 - mae: 5.1634
259/277 [===========================>..] - ETA: 0s - loss: 55.4063 - mae: 5.1465
275/277 [============================>.] - ETA: 0s - loss: 56.2100 - mae: 5.1767
277/277 [==============================] - 1s 4ms/step - loss: 56.5460 - mae: 5.2106 - val_loss: 87.7814 - val_mae: 6.0089
## Epoch 75/100
## 
  1/277 [..............................] - ETA: 0s - loss: 13.2050 - mae: 3.6339
 38/277 [===>..........................] - ETA: 0s - loss: 23.5574 - mae: 3.9109
 65/277 [======>.......................] - ETA: 0s - loss: 26.9354 - mae: 4.0109
 82/277 [=======>......................] - ETA: 0s - loss: 44.2991 - mae: 4.8842
 97/277 [=========>....................] - ETA: 0s - loss: 42.5889 - mae: 4.8817
110/277 [==========>...................] - ETA: 0s - loss: 41.1333 - mae: 4.8277
124/277 [============>.................] - ETA: 0s - loss: 60.7729 - mae: 5.2155
136/277 [=============>................] - ETA: 0s - loss: 57.3848 - mae: 5.0885
155/277 [===============>..............] - ETA: 0s - loss: 52.5129 - mae: 4.8747
179/277 [==================>...........] - ETA: 0s - loss: 53.1016 - mae: 5.0084
208/277 [=====================>........] - ETA: 0s - loss: 54.9321 - mae: 5.1343
234/277 [========================>.....] - ETA: 0s - loss: 54.7208 - mae: 5.1341
250/277 [==========================>...] - ETA: 0s - loss: 56.8057 - mae: 5.2653
266/277 [===========================>..] - ETA: 0s - loss: 58.2102 - mae: 5.3316
277/277 [==============================] - 1s 4ms/step - loss: 56.1757 - mae: 5.2029 - val_loss: 87.1217 - val_mae: 5.9713
## Epoch 76/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.1492 - mae: 0.3863
 42/277 [===>..........................] - ETA: 0s - loss: 31.2273 - mae: 4.6125
 72/277 [======>.......................] - ETA: 0s - loss: 58.9307 - mae: 5.5409
 89/277 [========>.....................] - ETA: 0s - loss: 77.9550 - mae: 6.2242
104/277 [==========>...................] - ETA: 0s - loss: 68.2444 - mae: 5.7185
119/277 [===========>..................] - ETA: 0s - loss: 63.4996 - mae: 5.5738
132/277 [=============>................] - ETA: 0s - loss: 60.1077 - mae: 5.4219
144/277 [==============>...............] - ETA: 0s - loss: 56.2409 - mae: 5.1966
156/277 [===============>..............] - ETA: 0s - loss: 54.8184 - mae: 5.1552
168/277 [=================>............] - ETA: 0s - loss: 56.6717 - mae: 5.2531
178/277 [==================>...........] - ETA: 0s - loss: 56.0208 - mae: 5.1869
197/277 [====================>.........] - ETA: 0s - loss: 57.1343 - mae: 5.2008
219/277 [======================>.......] - ETA: 0s - loss: 55.3982 - mae: 5.1303
235/277 [========================>.....] - ETA: 0s - loss: 55.3196 - mae: 5.1567
246/277 [=========================>....] - ETA: 0s - loss: 56.2233 - mae: 5.2139
256/277 [==========================>...] - ETA: 0s - loss: 55.5307 - mae: 5.2011
268/277 [============================>.] - ETA: 0s - loss: 56.9953 - mae: 5.2535
277/277 [==============================] - 1s 5ms/step - loss: 55.8565 - mae: 5.2058 - val_loss: 89.5742 - val_mae: 6.1115
## Epoch 77/100
## 
  1/277 [..............................] - ETA: 1s - loss: 10.3258 - mae: 3.2134
 19/277 [=>............................] - ETA: 0s - loss: 36.3146 - mae: 4.7017
 34/277 [==>...........................] - ETA: 0s - loss: 35.0449 - mae: 4.5980
 49/277 [====>.........................] - ETA: 0s - loss: 27.0618 - mae: 3.7876
 61/277 [=====>........................] - ETA: 0s - loss: 31.3720 - mae: 4.0549
 74/277 [=======>......................] - ETA: 0s - loss: 52.6049 - mae: 4.7994
 87/277 [========>.....................] - ETA: 0s - loss: 53.0764 - mae: 4.9373
100/277 [=========>....................] - ETA: 0s - loss: 52.2528 - mae: 4.9577
115/277 [===========>..................] - ETA: 0s - loss: 53.4707 - mae: 5.0749
129/277 [============>.................] - ETA: 0s - loss: 55.1689 - mae: 5.1719
143/277 [==============>...............] - ETA: 0s - loss: 62.9704 - mae: 5.5194
157/277 [================>.............] - ETA: 0s - loss: 64.4696 - mae: 5.6135
172/277 [=================>............] - ETA: 0s - loss: 61.3896 - mae: 5.5246
188/277 [===================>..........] - ETA: 0s - loss: 58.4241 - mae: 5.3689
201/277 [====================>.........] - ETA: 0s - loss: 58.4727 - mae: 5.3682
215/277 [======================>.......] - ETA: 0s - loss: 56.4478 - mae: 5.3055
229/277 [=======================>......] - ETA: 0s - loss: 54.6642 - mae: 5.2026
242/277 [=========================>....] - ETA: 0s - loss: 52.8139 - mae: 5.1266
253/277 [==========================>...] - ETA: 0s - loss: 53.3068 - mae: 5.1860
271/277 [============================>.] - ETA: 0s - loss: 55.1266 - mae: 5.1309
277/277 [==============================] - 1s 5ms/step - loss: 56.7368 - mae: 5.2297 - val_loss: 86.6123 - val_mae: 5.8984
## Epoch 78/100
## 
  1/277 [..............................] - ETA: 1s - loss: 0.0222 - mae: 0.1490
 13/277 [>.............................] - ETA: 1s - loss: 21.5137 - mae: 3.6953
 30/277 [==>...........................] - ETA: 0s - loss: 44.1686 - mae: 4.6427
 47/277 [====>.........................] - ETA: 0s - loss: 46.1804 - mae: 4.8634
 70/277 [======>.......................] - ETA: 0s - loss: 62.1383 - mae: 5.1632
 93/277 [=========>....................] - ETA: 0s - loss: 68.9010 - mae: 5.5621
122/277 [============>.................] - ETA: 0s - loss: 58.9312 - mae: 5.2132
153/277 [===============>..............] - ETA: 0s - loss: 56.2576 - mae: 5.1449
187/277 [===================>..........] - ETA: 0s - loss: 55.0676 - mae: 5.0567
225/277 [=======================>......] - ETA: 0s - loss: 50.6174 - mae: 4.9162
257/277 [==========================>...] - ETA: 0s - loss: 54.4179 - mae: 5.0909
277/277 [==============================] - 1s 3ms/step - loss: 56.2142 - mae: 5.2268 - val_loss: 86.8251 - val_mae: 5.9389
## Epoch 79/100
## 
  1/277 [..............................] - ETA: 0s - loss: 123.8315 - mae: 11.1280
 29/277 [==>...........................] - ETA: 0s - loss: 35.2272 - mae: 5.0895  
 56/277 [=====>........................] - ETA: 0s - loss: 37.9400 - mae: 4.8617
 85/277 [========>.....................] - ETA: 0s - loss: 59.2085 - mae: 5.8684
119/277 [===========>..................] - ETA: 0s - loss: 49.9182 - mae: 5.2855
149/277 [===============>..............] - ETA: 0s - loss: 61.4967 - mae: 5.6288
179/277 [==================>...........] - ETA: 0s - loss: 65.2936 - mae: 5.5401
212/277 [=====================>........] - ETA: 0s - loss: 61.7315 - mae: 5.4153
242/277 [=========================>....] - ETA: 0s - loss: 58.9283 - mae: 5.3316
275/277 [============================>.] - ETA: 0s - loss: 56.7429 - mae: 5.2228
277/277 [==============================] - 1s 2ms/step - loss: 56.3550 - mae: 5.1977 - val_loss: 86.9132 - val_mae: 5.9070
## Epoch 80/100
## 
  1/277 [..............................] - ETA: 0s - loss: 11.7044 - mae: 3.4212
 30/277 [==>...........................] - ETA: 0s - loss: 57.2939 - mae: 5.0661
 48/277 [====>.........................] - ETA: 0s - loss: 55.1931 - mae: 5.1912
 64/277 [=====>........................] - ETA: 0s - loss: 51.1874 - mae: 5.1681
 81/277 [=======>......................] - ETA: 0s - loss: 46.5616 - mae: 4.9405
 94/277 [=========>....................] - ETA: 0s - loss: 54.8428 - mae: 5.1138
112/277 [===========>..................] - ETA: 0s - loss: 54.3144 - mae: 5.1110
138/277 [=============>................] - ETA: 0s - loss: 51.4976 - mae: 5.0145
170/277 [=================>............] - ETA: 0s - loss: 58.1156 - mae: 5.1477
209/277 [=====================>........] - ETA: 0s - loss: 60.7119 - mae: 5.3751
235/277 [========================>.....] - ETA: 0s - loss: 57.3448 - mae: 5.2426
246/277 [=========================>....] - ETA: 0s - loss: 57.7405 - mae: 5.2776
255/277 [==========================>...] - ETA: 0s - loss: 57.0520 - mae: 5.2284
266/277 [===========================>..] - ETA: 0s - loss: 56.2422 - mae: 5.1839
277/277 [==============================] - ETA: 0s - loss: 56.2299 - mae: 5.1879
277/277 [==============================] - 1s 4ms/step - loss: 56.2299 - mae: 5.1879 - val_loss: 87.3156 - val_mae: 5.9458
## Epoch 81/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.9464 - mae: 0.9728
 15/277 [>.............................] - ETA: 0s - loss: 25.9546 - mae: 4.2440
 29/277 [==>...........................] - ETA: 0s - loss: 43.4284 - mae: 5.1333
 42/277 [===>..........................] - ETA: 0s - loss: 41.0875 - mae: 5.1024
 55/277 [====>.........................] - ETA: 0s - loss: 53.4011 - mae: 5.3091
 69/277 [======>.......................] - ETA: 0s - loss: 50.6826 - mae: 5.2244
 81/277 [=======>......................] - ETA: 0s - loss: 47.7403 - mae: 5.1104
 93/277 [=========>....................] - ETA: 0s - loss: 43.8728 - mae: 4.8775
105/277 [==========>...................] - ETA: 0s - loss: 55.5438 - mae: 5.1854
117/277 [===========>..................] - ETA: 0s - loss: 52.3635 - mae: 5.0171
128/277 [============>.................] - ETA: 0s - loss: 50.6401 - mae: 4.9372
139/277 [==============>...............] - ETA: 0s - loss: 47.4224 - mae: 4.7617
152/277 [===============>..............] - ETA: 0s - loss: 48.0219 - mae: 4.7277
159/277 [================>.............] - ETA: 0s - loss: 49.4583 - mae: 4.8209
166/277 [================>.............] - ETA: 0s - loss: 48.8128 - mae: 4.7529
176/277 [==================>...........] - ETA: 0s - loss: 50.0352 - mae: 4.8063
189/277 [===================>..........] - ETA: 0s - loss: 53.7357 - mae: 5.0425
200/277 [====================>.........] - ETA: 0s - loss: 52.4186 - mae: 4.9478
213/277 [======================>.......] - ETA: 0s - loss: 57.1846 - mae: 5.0498
226/277 [=======================>......] - ETA: 0s - loss: 56.3951 - mae: 5.0677
240/277 [========================>.....] - ETA: 0s - loss: 55.4351 - mae: 5.0559
256/277 [==========================>...] - ETA: 0s - loss: 55.5897 - mae: 5.1324
277/277 [==============================] - 1s 5ms/step - loss: 56.1793 - mae: 5.2231 - val_loss: 86.9822 - val_mae: 5.9165
## Epoch 82/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1152.0941 - mae: 33.9425
 24/277 [=>............................] - ETA: 0s - loss: 109.8034 - mae: 6.5695  
 47/277 [====>.........................] - ETA: 0s - loss: 78.9215 - mae: 5.8812 
 62/277 [=====>........................] - ETA: 0s - loss: 76.8911 - mae: 5.9590
 76/277 [=======>......................] - ETA: 0s - loss: 69.0204 - mae: 5.7780
 90/277 [========>.....................] - ETA: 0s - loss: 81.7246 - mae: 6.1729
104/277 [==========>...................] - ETA: 0s - loss: 75.8513 - mae: 5.9759
117/277 [===========>..................] - ETA: 0s - loss: 69.9779 - mae: 5.7199
137/277 [=============>................] - ETA: 0s - loss: 67.7474 - mae: 5.5929
161/277 [================>.............] - ETA: 0s - loss: 62.3503 - mae: 5.4345
178/277 [==================>...........] - ETA: 0s - loss: 58.6802 - mae: 5.2494
192/277 [===================>..........] - ETA: 0s - loss: 55.6415 - mae: 5.1063
208/277 [=====================>........] - ETA: 0s - loss: 53.6324 - mae: 5.0568
227/277 [=======================>......] - ETA: 0s - loss: 51.3320 - mae: 4.9988
247/277 [=========================>....] - ETA: 0s - loss: 56.7980 - mae: 5.1747
268/277 [============================>.] - ETA: 0s - loss: 55.9583 - mae: 5.1637
277/277 [==============================] - 1s 4ms/step - loss: 56.5667 - mae: 5.2103 - val_loss: 86.6120 - val_mae: 5.9036
## Epoch 83/100
## 
  1/277 [..............................] - ETA: 0s - loss: 3.5117 - mae: 1.8740
 26/277 [=>............................] - ETA: 0s - loss: 40.3406 - mae: 4.6964
 53/277 [====>.........................] - ETA: 0s - loss: 64.1771 - mae: 5.4033
 80/277 [=======>......................] - ETA: 0s - loss: 50.2221 - mae: 4.9737
102/277 [==========>...................] - ETA: 0s - loss: 45.2612 - mae: 4.8074
127/277 [============>.................] - ETA: 0s - loss: 45.2155 - mae: 4.8436
158/277 [================>.............] - ETA: 0s - loss: 44.6427 - mae: 4.8503
187/277 [===================>..........] - ETA: 0s - loss: 49.4917 - mae: 5.0459
217/277 [======================>.......] - ETA: 0s - loss: 57.5782 - mae: 5.2020
249/277 [=========================>....] - ETA: 0s - loss: 54.9130 - mae: 5.1634
277/277 [==============================] - 1s 3ms/step - loss: 56.3855 - mae: 5.2263 - val_loss: 86.1420 - val_mae: 5.8919
## Epoch 84/100
## 
  1/277 [..............................] - ETA: 0s - loss: 49.7632 - mae: 7.0543
 31/277 [==>...........................] - ETA: 0s - loss: 45.5514 - mae: 5.0998
 65/277 [======>.......................] - ETA: 0s - loss: 35.8458 - mae: 4.6293
105/277 [==========>...................] - ETA: 0s - loss: 60.0188 - mae: 5.5814
139/277 [==============>...............] - ETA: 0s - loss: 53.0768 - mae: 5.2848
160/277 [================>.............] - ETA: 0s - loss: 51.9970 - mae: 5.2105
177/277 [==================>...........] - ETA: 0s - loss: 52.6791 - mae: 5.2015
194/277 [====================>.........] - ETA: 0s - loss: 51.7532 - mae: 5.1638
207/277 [=====================>........] - ETA: 0s - loss: 51.0908 - mae: 5.1390
220/277 [======================>.......] - ETA: 0s - loss: 55.0011 - mae: 5.2568
233/277 [========================>.....] - ETA: 0s - loss: 60.7516 - mae: 5.4109
247/277 [=========================>....] - ETA: 0s - loss: 58.5189 - mae: 5.2934
260/277 [===========================>..] - ETA: 0s - loss: 57.8861 - mae: 5.2952
274/277 [============================>.] - ETA: 0s - loss: 56.1990 - mae: 5.2023
277/277 [==============================] - 1s 4ms/step - loss: 56.2037 - mae: 5.2093 - val_loss: 86.3886 - val_mae: 5.9203
## Epoch 85/100
## 
  1/277 [..............................] - ETA: 0s - loss: 15.7348 - mae: 3.9667
 13/277 [>.............................] - ETA: 1s - loss: 21.6813 - mae: 3.4028
 26/277 [=>............................] - ETA: 1s - loss: 60.2409 - mae: 5.2222
 40/277 [===>..........................] - ETA: 0s - loss: 64.5002 - mae: 5.6801
 56/277 [=====>........................] - ETA: 0s - loss: 73.4819 - mae: 5.9127
 70/277 [======>.......................] - ETA: 0s - loss: 68.3015 - mae: 5.6825
 86/277 [========>.....................] - ETA: 0s - loss: 65.2475 - mae: 5.6738
100/277 [=========>....................] - ETA: 0s - loss: 59.3810 - mae: 5.3427
114/277 [===========>..................] - ETA: 0s - loss: 58.0201 - mae: 5.4137
129/277 [============>.................] - ETA: 0s - loss: 58.0415 - mae: 5.4437
144/277 [==============>...............] - ETA: 0s - loss: 63.2997 - mae: 5.6144
159/277 [================>.............] - ETA: 0s - loss: 58.9074 - mae: 5.3797
178/277 [==================>...........] - ETA: 0s - loss: 62.9163 - mae: 5.6101
191/277 [===================>..........] - ETA: 0s - loss: 61.1425 - mae: 5.5596
204/277 [=====================>........] - ETA: 0s - loss: 60.0330 - mae: 5.5106
218/277 [======================>.......] - ETA: 0s - loss: 57.3578 - mae: 5.3830
230/277 [=======================>......] - ETA: 0s - loss: 55.4446 - mae: 5.2709
243/277 [=========================>....] - ETA: 0s - loss: 59.0581 - mae: 5.3191
258/277 [==========================>...] - ETA: 0s - loss: 58.5246 - mae: 5.3512
272/277 [============================>.] - ETA: 0s - loss: 57.0307 - mae: 5.2903
277/277 [==============================] - 1s 5ms/step - loss: 56.3305 - mae: 5.2510 - val_loss: 86.6412 - val_mae: 5.8994
## Epoch 86/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.0084 - mae: 0.0915
 36/277 [==>...........................] - ETA: 0s - loss: 48.1720 - mae: 5.3382
 71/277 [======>.......................] - ETA: 0s - loss: 47.5308 - mae: 5.2568
 90/277 [========>.....................] - ETA: 0s - loss: 64.1440 - mae: 5.7193
106/277 [==========>...................] - ETA: 0s - loss: 59.9126 - mae: 5.3779
123/277 [============>.................] - ETA: 0s - loss: 64.2280 - mae: 5.6112
137/277 [=============>................] - ETA: 0s - loss: 61.8408 - mae: 5.4710
150/277 [===============>..............] - ETA: 0s - loss: 63.4713 - mae: 5.6457
165/277 [================>.............] - ETA: 0s - loss: 60.7738 - mae: 5.5651
178/277 [==================>...........] - ETA: 0s - loss: 57.5572 - mae: 5.3937
191/277 [===================>..........] - ETA: 0s - loss: 54.6598 - mae: 5.2318
205/277 [=====================>........] - ETA: 0s - loss: 53.9926 - mae: 5.2235
212/277 [=====================>........] - ETA: 0s - loss: 53.5401 - mae: 5.1950
223/277 [=======================>......] - ETA: 0s - loss: 51.5979 - mae: 5.0854
236/277 [========================>.....] - ETA: 0s - loss: 55.0701 - mae: 5.1489
247/277 [=========================>....] - ETA: 0s - loss: 53.1939 - mae: 5.0483
258/277 [==========================>...] - ETA: 0s - loss: 56.2037 - mae: 5.1671
271/277 [============================>.] - ETA: 0s - loss: 56.2960 - mae: 5.1881
277/277 [==============================] - 1s 5ms/step - loss: 56.2357 - mae: 5.1894 - val_loss: 86.8056 - val_mae: 5.9417
## Epoch 87/100
## 
  1/277 [..............................] - ETA: 1s - loss: 37.2484 - mae: 6.1031
 16/277 [>.............................] - ETA: 0s - loss: 41.4858 - mae: 5.3440
 31/277 [==>...........................] - ETA: 0s - loss: 34.4115 - mae: 4.7391
 43/277 [===>..........................] - ETA: 0s - loss: 32.9161 - mae: 4.6633
 55/277 [====>.........................] - ETA: 0s - loss: 57.8085 - mae: 5.3595
 68/277 [======>.......................] - ETA: 0s - loss: 57.1749 - mae: 5.2764
 81/277 [=======>......................] - ETA: 0s - loss: 55.2880 - mae: 5.1811
101/277 [=========>....................] - ETA: 0s - loss: 59.2817 - mae: 5.5745
116/277 [===========>..................] - ETA: 0s - loss: 67.0782 - mae: 5.6579
130/277 [=============>................] - ETA: 0s - loss: 62.7230 - mae: 5.4708
146/277 [==============>...............] - ETA: 0s - loss: 59.2082 - mae: 5.3534
161/277 [================>.............] - ETA: 0s - loss: 59.6439 - mae: 5.3707
178/277 [==================>...........] - ETA: 0s - loss: 57.2538 - mae: 5.3019
194/277 [====================>.........] - ETA: 0s - loss: 55.3391 - mae: 5.2191
210/277 [=====================>........] - ETA: 0s - loss: 52.6228 - mae: 5.1169
225/277 [=======================>......] - ETA: 0s - loss: 55.0984 - mae: 5.1929
240/277 [========================>.....] - ETA: 0s - loss: 56.9781 - mae: 5.3383
253/277 [==========================>...] - ETA: 0s - loss: 59.0407 - mae: 5.3610
267/277 [===========================>..] - ETA: 0s - loss: 56.9867 - mae: 5.2561
277/277 [==============================] - 1s 5ms/step - loss: 56.0014 - mae: 5.2030 - val_loss: 86.1145 - val_mae: 5.8970
## Epoch 88/100
## 
  1/277 [..............................] - ETA: 1s - loss: 0.0169 - mae: 0.1299
 15/277 [>.............................] - ETA: 0s - loss: 38.4346 - mae: 4.7241
 29/277 [==>...........................] - ETA: 0s - loss: 45.0966 - mae: 5.0613
 42/277 [===>..........................] - ETA: 0s - loss: 69.0631 - mae: 5.6044
 55/277 [====>.........................] - ETA: 0s - loss: 70.6487 - mae: 5.7777
 69/277 [======>.......................] - ETA: 0s - loss: 62.6857 - mae: 5.5247
 85/277 [========>.....................] - ETA: 0s - loss: 60.9926 - mae: 5.5178
101/277 [=========>....................] - ETA: 0s - loss: 74.9367 - mae: 6.0168
116/277 [===========>..................] - ETA: 0s - loss: 67.0512 - mae: 5.6120
130/277 [=============>................] - ETA: 0s - loss: 63.6553 - mae: 5.5209
144/277 [==============>...............] - ETA: 0s - loss: 60.0973 - mae: 5.3915
156/277 [===============>..............] - ETA: 0s - loss: 63.6203 - mae: 5.5972
167/277 [=================>............] - ETA: 0s - loss: 61.0352 - mae: 5.5125
184/277 [==================>...........] - ETA: 0s - loss: 58.3145 - mae: 5.3852
199/277 [====================>.........] - ETA: 0s - loss: 54.9895 - mae: 5.1997
212/277 [=====================>........] - ETA: 0s - loss: 54.7596 - mae: 5.2076
230/277 [=======================>......] - ETA: 0s - loss: 53.8359 - mae: 5.1121
247/277 [=========================>....] - ETA: 0s - loss: 52.3289 - mae: 5.0260
262/277 [===========================>..] - ETA: 0s - loss: 52.9080 - mae: 5.0893
276/277 [============================>.] - ETA: 0s - loss: 56.5883 - mae: 5.2200
277/277 [==============================] - 1s 5ms/step - loss: 56.4053 - mae: 5.2099 - val_loss: 85.8990 - val_mae: 5.8743
## Epoch 89/100
## 
  1/277 [..............................] - ETA: 0s - loss: 3.1894 - mae: 1.7859
 34/277 [==>...........................] - ETA: 0s - loss: 82.6797 - mae: 5.8925
 69/277 [======>.......................] - ETA: 0s - loss: 63.8598 - mae: 5.4947
100/277 [=========>....................] - ETA: 0s - loss: 63.7682 - mae: 5.4330
131/277 [=============>................] - ETA: 0s - loss: 64.0330 - mae: 5.5991
164/277 [================>.............] - ETA: 0s - loss: 56.3804 - mae: 5.2581
193/277 [===================>..........] - ETA: 0s - loss: 56.3092 - mae: 5.2942
222/277 [=======================>......] - ETA: 0s - loss: 53.0217 - mae: 5.1897
251/277 [==========================>...] - ETA: 0s - loss: 56.6831 - mae: 5.2356
270/277 [============================>.] - ETA: 0s - loss: 56.6664 - mae: 5.1942
277/277 [==============================] - 1s 3ms/step - loss: 56.4184 - mae: 5.2032 - val_loss: 86.2723 - val_mae: 5.9145
## Epoch 90/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1.3012 - mae: 1.1407
 37/277 [===>..........................] - ETA: 0s - loss: 60.1745 - mae: 5.4018
 77/277 [=======>......................] - ETA: 0s - loss: 66.9941 - mae: 5.5397
110/277 [==========>...................] - ETA: 0s - loss: 59.7999 - mae: 5.2938
144/277 [==============>...............] - ETA: 0s - loss: 51.6978 - mae: 4.9647
181/277 [==================>...........] - ETA: 0s - loss: 63.3786 - mae: 5.3496
214/277 [======================>.......] - ETA: 0s - loss: 60.4001 - mae: 5.3281
248/277 [=========================>....] - ETA: 0s - loss: 58.1295 - mae: 5.2990
277/277 [==============================] - 1s 2ms/step - loss: 56.5349 - mae: 5.2488 - val_loss: 86.2865 - val_mae: 5.8811
## Epoch 91/100
## 
  1/277 [..............................] - ETA: 0s - loss: 5.4562 - mae: 2.3358
 35/277 [==>...........................] - ETA: 0s - loss: 40.0486 - mae: 4.6029
 64/277 [=====>........................] - ETA: 0s - loss: 37.2771 - mae: 4.5304
 91/277 [========>.....................] - ETA: 0s - loss: 39.6309 - mae: 4.8466
119/277 [===========>..................] - ETA: 0s - loss: 54.9890 - mae: 5.4265
149/277 [===============>..............] - ETA: 0s - loss: 52.1006 - mae: 5.2043
177/277 [==================>...........] - ETA: 0s - loss: 52.8779 - mae: 5.1886
205/277 [=====================>........] - ETA: 0s - loss: 57.0679 - mae: 5.4138
237/277 [========================>.....] - ETA: 0s - loss: 56.9498 - mae: 5.2285
270/277 [============================>.] - ETA: 0s - loss: 57.3063 - mae: 5.2455
277/277 [==============================] - 1s 3ms/step - loss: 56.5046 - mae: 5.1849 - val_loss: 86.0123 - val_mae: 5.8917
## Epoch 92/100
## 
  1/277 [..............................] - ETA: 0s - loss: 21.7998 - mae: 4.6690
 35/277 [==>...........................] - ETA: 0s - loss: 34.0254 - mae: 4.3828
 72/277 [======>.......................] - ETA: 0s - loss: 47.9030 - mae: 5.0969
107/277 [==========>...................] - ETA: 0s - loss: 55.1838 - mae: 5.2045
144/277 [==============>...............] - ETA: 0s - loss: 52.4026 - mae: 5.0768
183/277 [==================>...........] - ETA: 0s - loss: 66.7061 - mae: 5.5331
220/277 [======================>.......] - ETA: 0s - loss: 60.6864 - mae: 5.3585
253/277 [==========================>...] - ETA: 0s - loss: 57.0794 - mae: 5.2796
277/277 [==============================] - 1s 2ms/step - loss: 56.0248 - mae: 5.2143 - val_loss: 86.3465 - val_mae: 5.9065
## Epoch 93/100
## 
  1/277 [..............................] - ETA: 0s - loss: 46.7205 - mae: 6.8352
 35/277 [==>...........................] - ETA: 0s - loss: 54.7331 - mae: 5.4145
 75/277 [=======>......................] - ETA: 0s - loss: 50.3253 - mae: 5.2078
115/277 [===========>..................] - ETA: 0s - loss: 45.8364 - mae: 4.9464
153/277 [===============>..............] - ETA: 0s - loss: 57.0851 - mae: 5.1325
189/277 [===================>..........] - ETA: 0s - loss: 52.5734 - mae: 5.0676
222/277 [=======================>......] - ETA: 0s - loss: 57.2796 - mae: 5.1967
255/277 [==========================>...] - ETA: 0s - loss: 54.2930 - mae: 5.1215
277/277 [==============================] - 1s 2ms/step - loss: 56.3440 - mae: 5.1933 - val_loss: 85.9479 - val_mae: 5.8978
## Epoch 94/100
## 
  1/277 [..............................] - ETA: 0s - loss: 69.0829 - mae: 8.3116
 37/277 [===>..........................] - ETA: 0s - loss: 56.9566 - mae: 6.1556
 72/277 [======>.......................] - ETA: 0s - loss: 43.9975 - mae: 5.0080
110/277 [==========>...................] - ETA: 0s - loss: 51.9545 - mae: 5.1114
149/277 [===============>..............] - ETA: 0s - loss: 49.4764 - mae: 4.9657
189/277 [===================>..........] - ETA: 0s - loss: 56.5909 - mae: 5.1921
226/277 [=======================>......] - ETA: 0s - loss: 54.8463 - mae: 5.0630
261/277 [===========================>..] - ETA: 0s - loss: 54.7940 - mae: 5.0683
277/277 [==============================] - 1s 2ms/step - loss: 56.0687 - mae: 5.1769 - val_loss: 85.9863 - val_mae: 5.8881
## Epoch 95/100
## 
  1/277 [..............................] - ETA: 0s - loss: 106.2036 - mae: 10.3055
 32/277 [==>...........................] - ETA: 0s - loss: 68.6652 - mae: 5.9208  
 71/277 [======>.......................] - ETA: 0s - loss: 51.9009 - mae: 5.1275
112/277 [===========>..................] - ETA: 0s - loss: 53.4509 - mae: 5.1493
150/277 [===============>..............] - ETA: 0s - loss: 47.6111 - mae: 4.8986
189/277 [===================>..........] - ETA: 0s - loss: 43.8006 - mae: 4.7333
226/277 [=======================>......] - ETA: 0s - loss: 56.8747 - mae: 5.1197
264/277 [===========================>..] - ETA: 0s - loss: 57.2969 - mae: 5.1892
277/277 [==============================] - 1s 2ms/step - loss: 55.8384 - mae: 5.1535 - val_loss: 85.4000 - val_mae: 5.8393
## Epoch 96/100
## 
  1/277 [..............................] - ETA: 0s - loss: 434.6029 - mae: 20.8471
 38/277 [===>..........................] - ETA: 0s - loss: 46.0220 - mae: 4.9623  
 76/277 [=======>......................] - ETA: 0s - loss: 40.6165 - mae: 4.7004
118/277 [===========>..................] - ETA: 0s - loss: 37.9911 - mae: 4.5817
155/277 [===============>..............] - ETA: 0s - loss: 34.3589 - mae: 4.3611
190/277 [===================>..........] - ETA: 0s - loss: 40.6984 - mae: 4.6788
228/277 [=======================>......] - ETA: 0s - loss: 53.6893 - mae: 5.1180
262/277 [===========================>..] - ETA: 0s - loss: 52.2926 - mae: 5.0836
277/277 [==============================] - 1s 2ms/step - loss: 56.0756 - mae: 5.1798 - val_loss: 85.6500 - val_mae: 5.8877
## Epoch 97/100
## 
  1/277 [..............................] - ETA: 0s - loss: 248.1198 - mae: 15.7518
 38/277 [===>..........................] - ETA: 0s - loss: 81.9894 - mae: 6.1160  
 72/277 [======>.......................] - ETA: 0s - loss: 64.3820 - mae: 5.8119
109/277 [==========>...................] - ETA: 0s - loss: 58.2950 - mae: 5.6720
147/277 [==============>...............] - ETA: 0s - loss: 50.7166 - mae: 5.3538
182/277 [==================>...........] - ETA: 0s - loss: 59.6364 - mae: 5.4992
220/277 [======================>.......] - ETA: 0s - loss: 56.7680 - mae: 5.3299
259/277 [===========================>..] - ETA: 0s - loss: 55.2330 - mae: 5.1748
277/277 [==============================] - 1s 2ms/step - loss: 55.5398 - mae: 5.2243 - val_loss: 87.3205 - val_mae: 5.9867
## Epoch 98/100
## 
  1/277 [..............................] - ETA: 0s - loss: 3.1225 - mae: 1.7671
 38/277 [===>..........................] - ETA: 0s - loss: 37.8133 - mae: 4.4477
 79/277 [=======>......................] - ETA: 0s - loss: 55.3101 - mae: 4.8214
113/277 [===========>..................] - ETA: 0s - loss: 54.1975 - mae: 5.0252
149/277 [===============>..............] - ETA: 0s - loss: 49.0330 - mae: 4.8567
189/277 [===================>..........] - ETA: 0s - loss: 50.4331 - mae: 5.0397
221/277 [======================>.......] - ETA: 0s - loss: 54.6371 - mae: 5.2144
256/277 [==========================>...] - ETA: 0s - loss: 53.2883 - mae: 5.1671
277/277 [==============================] - 1s 2ms/step - loss: 56.3822 - mae: 5.2044 - val_loss: 86.7429 - val_mae: 5.9352
## Epoch 99/100
## 
  1/277 [..............................] - ETA: 0s - loss: 69.5300 - mae: 8.3385
 37/277 [===>..........................] - ETA: 0s - loss: 44.8379 - mae: 5.1943
 74/277 [=======>......................] - ETA: 0s - loss: 33.5993 - mae: 4.4896
114/277 [===========>..................] - ETA: 0s - loss: 42.3922 - mae: 4.7732
138/277 [=============>................] - ETA: 0s - loss: 44.8836 - mae: 5.0325
153/277 [===============>..............] - ETA: 0s - loss: 43.9122 - mae: 4.9688
164/277 [================>.............] - ETA: 0s - loss: 51.4735 - mae: 5.1411
175/277 [=================>............] - ETA: 0s - loss: 49.5092 - mae: 5.0456
193/277 [===================>..........] - ETA: 0s - loss: 50.8282 - mae: 5.0626
220/277 [======================>.......] - ETA: 0s - loss: 53.6252 - mae: 5.1475
253/277 [==========================>...] - ETA: 0s - loss: 58.4922 - mae: 5.3015
277/277 [==============================] - 1s 3ms/step - loss: 55.9688 - mae: 5.2002 - val_loss: 86.2894 - val_mae: 5.8698
## Epoch 100/100
## 
  1/277 [..............................] - ETA: 0s - loss: 12.0438 - mae: 3.4704
 20/277 [=>............................] - ETA: 0s - loss: 112.2303 - mae: 6.7402
 44/277 [===>..........................] - ETA: 0s - loss: 66.6415 - mae: 5.1697 
 64/277 [=====>........................] - ETA: 0s - loss: 66.3234 - mae: 5.5732
 83/277 [=======>......................] - ETA: 0s - loss: 59.8172 - mae: 5.3133
105/277 [==========>...................] - ETA: 0s - loss: 58.6972 - mae: 5.3574
131/277 [=============>................] - ETA: 0s - loss: 64.5431 - mae: 5.5126
158/277 [================>.............] - ETA: 0s - loss: 57.9391 - mae: 5.2688
186/277 [===================>..........] - ETA: 0s - loss: 58.0589 - mae: 5.1729
214/277 [======================>.......] - ETA: 0s - loss: 58.0066 - mae: 5.2461
242/277 [=========================>....] - ETA: 0s - loss: 56.0266 - mae: 5.1339
269/277 [============================>.] - ETA: 0s - loss: 55.7529 - mae: 5.1556
277/277 [==============================] - 1s 3ms/step - loss: 55.7764 - mae: 5.1819 - val_loss: 86.2569 - val_mae: 5.9141

Architecture 1: 10 hidden layers and 5 nodes

plt.plot(history.history['mae'])
plt.plot(history.history['val_mae'])
plt.title('Graph 4: model accuracy')
plt.ylabel('accuracy (MAE)')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()

plt.figure()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Graph 5: model loss (MSE)')
plt.ylabel('loss (MSE)')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()

# smaller network

model = keras.models.Sequential()
model.add(keras.layers.Dense(3, input_dim=3, activation="relu"))
model.add(keras.layers.Dense(1, activation="relu"))

# the softmax puts the output of the network between 0 and 1. 
# We need to multiple this by the max expected value to ensure the network outputs in the desired range

model.compile(loss="mse", optimizer="adam", metrics=["mae"])

history = model.fit(X_train, y_train, epochs=100, batch_size=1, validation_data=(X_test, y_test))
## Epoch 1/100
## 
  1/277 [..............................] - ETA: 1:50 - loss: 1998.0901 - mae: 44.7000
 46/277 [===>..........................] - ETA: 0s - loss: 1597.8732 - mae: 37.7646  
 90/277 [========>.....................] - ETA: 0s - loss: 1558.0535 - mae: 37.1152
131/277 [=============>................] - ETA: 0s - loss: 1606.2996 - mae: 37.9854
179/277 [==================>...........] - ETA: 0s - loss: 1616.4878 - mae: 37.8427
222/277 [=======================>......] - ETA: 0s - loss: 1680.1354 - mae: 38.5946
258/277 [==========================>...] - ETA: 0s - loss: 1630.5378 - mae: 38.0588
277/277 [==============================] - 1s 2ms/step - loss: 1616.9983 - mae: 37.8915 - val_loss: 1496.6290 - val_mae: 36.0500
## Epoch 2/100
## 
  1/277 [..............................] - ETA: 0s - loss: 540.7808 - mae: 23.2547
 31/277 [==>...........................] - ETA: 0s - loss: 1497.3723 - mae: 36.3072
 67/277 [======>.......................] - ETA: 0s - loss: 1424.5315 - mae: 35.1727
112/277 [===========>..................] - ETA: 0s - loss: 1530.7323 - mae: 36.4023
156/277 [===============>..............] - ETA: 0s - loss: 1573.0769 - mae: 37.1025
195/277 [====================>.........] - ETA: 0s - loss: 1579.3331 - mae: 37.2347
239/277 [========================>.....] - ETA: 0s - loss: 1576.0472 - mae: 37.3174
277/277 [==============================] - 0s 2ms/step - loss: 1553.5913 - mae: 37.0740 - val_loss: 1430.9583 - val_mae: 35.1263
## Epoch 3/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1276.2859 - mae: 35.7251
 45/277 [===>..........................] - ETA: 0s - loss: 1465.9917 - mae: 35.9999
 86/277 [========>.....................] - ETA: 0s - loss: 1587.3578 - mae: 37.7467
127/277 [============>.................] - ETA: 0s - loss: 1584.7610 - mae: 37.3364
168/277 [=================>............] - ETA: 0s - loss: 1544.2035 - mae: 36.7559
210/277 [=====================>........] - ETA: 0s - loss: 1535.7168 - mae: 36.7116
253/277 [==========================>...] - ETA: 0s - loss: 1478.7111 - mae: 35.9826
277/277 [==============================] - 0s 2ms/step - loss: 1475.3707 - mae: 36.0297 - val_loss: 1355.0399 - val_mae: 34.0153
## Epoch 4/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2354.7053 - mae: 48.5253
 40/277 [===>..........................] - ETA: 0s - loss: 1273.7214 - mae: 33.6678
 87/277 [========>.....................] - ETA: 0s - loss: 1304.0548 - mae: 33.8769
132/277 [=============>................] - ETA: 0s - loss: 1442.3633 - mae: 35.5851
172/277 [=================>............] - ETA: 0s - loss: 1396.2786 - mae: 35.0088
213/277 [======================>.......] - ETA: 0s - loss: 1425.6266 - mae: 35.3437
255/277 [==========================>...] - ETA: 0s - loss: 1404.1102 - mae: 35.0369
277/277 [==============================] - 0s 2ms/step - loss: 1383.9669 - mae: 34.7681 - val_loss: 1264.2551 - val_mae: 32.6338
## Epoch 5/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2109.0989 - mae: 45.9249
 38/277 [===>..........................] - ETA: 0s - loss: 1159.4103 - mae: 32.1897
 82/277 [=======>......................] - ETA: 0s - loss: 1233.1403 - mae: 33.0679
123/277 [============>.................] - ETA: 0s - loss: 1197.1030 - mae: 32.2729
167/277 [=================>............] - ETA: 0s - loss: 1274.5559 - mae: 33.0687
216/277 [======================>.......] - ETA: 0s - loss: 1261.7791 - mae: 32.9351
257/277 [==========================>...] - ETA: 0s - loss: 1266.3225 - mae: 33.1007
277/277 [==============================] - 0s 2ms/step - loss: 1278.4558 - mae: 33.2569 - val_loss: 1159.9810 - val_mae: 30.9756
## Epoch 6/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2933.1477 - mae: 54.1585
 40/277 [===>..........................] - ETA: 0s - loss: 1433.9371 - mae: 35.6000
 80/277 [=======>......................] - ETA: 0s - loss: 1364.6918 - mae: 33.9439
121/277 [============>.................] - ETA: 0s - loss: 1280.4908 - mae: 32.8702
161/277 [================>.............] - ETA: 0s - loss: 1244.7550 - mae: 32.4297
200/277 [====================>.........] - ETA: 0s - loss: 1190.1443 - mae: 31.7468
246/277 [=========================>....] - ETA: 0s - loss: 1188.8220 - mae: 31.9270
277/277 [==============================] - 0s 2ms/step - loss: 1160.4546 - mae: 31.4383 - val_loss: 1045.5870 - val_mae: 29.0721
## Epoch 7/100
## 
  1/277 [..............................] - ETA: 0s - loss: 386.0805 - mae: 19.6489
 50/277 [====>.........................] - ETA: 0s - loss: 951.1861 - mae: 27.3937
 87/277 [========>.....................] - ETA: 0s - loss: 976.1880 - mae: 28.1466
119/277 [===========>..................] - ETA: 0s - loss: 1009.7610 - mae: 29.0348
153/277 [===============>..............] - ETA: 0s - loss: 1057.8367 - mae: 29.6435
190/277 [===================>..........] - ETA: 0s - loss: 1011.2914 - mae: 29.0215
229/277 [=======================>......] - ETA: 0s - loss: 1022.1534 - mae: 29.2397
276/277 [============================>.] - ETA: 0s - loss: 1034.0159 - mae: 29.4403
277/277 [==============================] - 1s 2ms/step - loss: 1030.7330 - mae: 29.3744 - val_loss: 923.4904 - val_mae: 26.9159
## Epoch 8/100
## 
  1/277 [..............................] - ETA: 0s - loss: 609.4911 - mae: 24.6879
 43/277 [===>..........................] - ETA: 0s - loss: 948.4042 - mae: 28.5707
 81/277 [=======>......................] - ETA: 0s - loss: 1028.3644 - mae: 29.4719
121/277 [============>.................] - ETA: 0s - loss: 1051.7020 - mae: 29.4922
162/277 [================>.............] - ETA: 0s - loss: 975.6657 - mae: 28.3239 
198/277 [====================>.........] - ETA: 0s - loss: 950.8846 - mae: 28.0777
237/277 [========================>.....] - ETA: 0s - loss: 923.5403 - mae: 27.5068
277/277 [==============================] - 0s 2ms/step - loss: 894.8761 - mae: 27.0444 - val_loss: 795.9665 - val_mae: 24.5539
## Epoch 9/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1016.2667 - mae: 31.8789
 40/277 [===>..........................] - ETA: 0s - loss: 843.3636 - mae: 26.0149 
 76/277 [=======>......................] - ETA: 0s - loss: 848.6406 - mae: 26.4669
100/277 [=========>....................] - ETA: 0s - loss: 837.5892 - mae: 26.1252
119/277 [===========>..................] - ETA: 0s - loss: 792.8175 - mae: 25.3296
146/277 [==============>...............] - ETA: 0s - loss: 771.9811 - mae: 25.1033
188/277 [===================>..........] - ETA: 0s - loss: 757.0491 - mae: 24.7413
229/277 [=======================>......] - ETA: 0s - loss: 765.3405 - mae: 24.6979
274/277 [============================>.] - ETA: 0s - loss: 760.0305 - mae: 24.6068
277/277 [==============================] - 1s 2ms/step - loss: 760.2710 - mae: 24.6097 - val_loss: 675.9009 - val_mae: 22.1767
## Epoch 10/100
## 
  1/277 [..............................] - ETA: 0s - loss: 189.6285 - mae: 13.7706
 41/277 [===>..........................] - ETA: 0s - loss: 723.9330 - mae: 22.9880
 81/277 [=======>......................] - ETA: 0s - loss: 746.8612 - mae: 23.6234
122/277 [============>.................] - ETA: 0s - loss: 678.8033 - mae: 22.6651
163/277 [================>.............] - ETA: 0s - loss: 670.9965 - mae: 22.7474
204/277 [=====================>........] - ETA: 0s - loss: 669.2458 - mae: 22.7338
245/277 [=========================>....] - ETA: 0s - loss: 656.2133 - mae: 22.4151
277/277 [==============================] - 0s 2ms/step - loss: 634.5137 - mae: 22.0377 - val_loss: 562.6063 - val_mae: 19.7746
## Epoch 11/100
## 
  1/277 [..............................] - ETA: 0s - loss: 491.4770 - mae: 22.1693
 42/277 [===>..........................] - ETA: 0s - loss: 569.3159 - mae: 21.7601
 89/277 [========>.....................] - ETA: 0s - loss: 592.4177 - mae: 21.0854
133/277 [=============>................] - ETA: 0s - loss: 573.7220 - mae: 20.6786
175/277 [=================>............] - ETA: 0s - loss: 573.0273 - mae: 20.6170
223/277 [=======================>......] - ETA: 0s - loss: 544.7793 - mae: 19.9668
267/277 [===========================>..] - ETA: 0s - loss: 528.1789 - mae: 19.6091
277/277 [==============================] - 0s 2ms/step - loss: 521.6364 - mae: 19.5355 - val_loss: 465.7565 - val_mae: 17.4769
## Epoch 12/100
## 
  1/277 [..............................] - ETA: 0s - loss: 95.1441 - mae: 9.7542
 34/277 [==>...........................] - ETA: 0s - loss: 472.5104 - mae: 19.0918
 69/277 [======>.......................] - ETA: 0s - loss: 427.9719 - mae: 17.5228
106/277 [==========>...................] - ETA: 0s - loss: 435.3142 - mae: 17.9175
154/277 [===============>..............] - ETA: 0s - loss: 424.3512 - mae: 17.6537
209/277 [=====================>........] - ETA: 0s - loss: 446.7186 - mae: 17.7887
253/277 [==========================>...] - ETA: 0s - loss: 423.6664 - mae: 17.3362
277/277 [==============================] - 0s 2ms/step - loss: 424.5092 - mae: 17.3397 - val_loss: 383.0256 - val_mae: 15.4595
## Epoch 13/100
## 
  1/277 [..............................] - ETA: 0s - loss: 177.0028 - mae: 13.3042
 43/277 [===>..........................] - ETA: 0s - loss: 346.4156 - mae: 15.2540
 85/277 [========>.....................] - ETA: 0s - loss: 321.6626 - mae: 14.7902
132/277 [=============>................] - ETA: 0s - loss: 362.0220 - mae: 15.5021
175/277 [=================>............] - ETA: 0s - loss: 341.3670 - mae: 14.9770
216/277 [======================>.......] - ETA: 0s - loss: 338.4705 - mae: 15.1104
259/277 [===========================>..] - ETA: 0s - loss: 348.6307 - mae: 15.4127
277/277 [==============================] - 0s 2ms/step - loss: 344.1104 - mae: 15.2823 - val_loss: 314.7941 - val_mae: 13.7511
## Epoch 14/100
## 
  1/277 [..............................] - ETA: 0s - loss: 158.9439 - mae: 12.6073
 43/277 [===>..........................] - ETA: 0s - loss: 301.9646 - mae: 14.3177
 68/277 [======>.......................] - ETA: 0s - loss: 297.4809 - mae: 13.8955
 92/277 [========>.....................] - ETA: 0s - loss: 281.7870 - mae: 13.7120
123/277 [============>.................] - ETA: 0s - loss: 275.2194 - mae: 13.6477
157/277 [================>.............] - ETA: 0s - loss: 264.8951 - mae: 13.3418
197/277 [====================>.........] - ETA: 0s - loss: 287.9789 - mae: 13.7303
244/277 [=========================>....] - ETA: 0s - loss: 286.8116 - mae: 13.6370
277/277 [==============================] - 1s 2ms/step - loss: 279.3558 - mae: 13.5544 - val_loss: 262.8283 - val_mae: 12.4090
## Epoch 15/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1137.4470 - mae: 33.7261
 37/277 [===>..........................] - ETA: 0s - loss: 239.9804 - mae: 13.3015 
 67/277 [======>.......................] - ETA: 0s - loss: 251.0464 - mae: 13.1950
 96/277 [=========>....................] - ETA: 0s - loss: 297.0596 - mae: 13.9683
129/277 [============>.................] - ETA: 0s - loss: 267.7773 - mae: 13.1258
164/277 [================>.............] - ETA: 0s - loss: 249.8465 - mae: 12.5888
195/277 [====================>.........] - ETA: 0s - loss: 235.2780 - mae: 12.2184
228/277 [=======================>......] - ETA: 0s - loss: 223.6391 - mae: 11.9430
262/277 [===========================>..] - ETA: 0s - loss: 230.0359 - mae: 12.0448
277/277 [==============================] - 1s 2ms/step - loss: 230.2234 - mae: 12.1045 - val_loss: 223.9200 - val_mae: 11.3551
## Epoch 16/100
## 
  1/277 [..............................] - ETA: 0s - loss: 176.4471 - mae: 13.2833
 31/277 [==>...........................] - ETA: 0s - loss: 275.0684 - mae: 13.4785
 64/277 [=====>........................] - ETA: 0s - loss: 259.8032 - mae: 13.0822
 98/277 [=========>....................] - ETA: 0s - loss: 217.8391 - mae: 11.9991
120/277 [===========>..................] - ETA: 0s - loss: 194.6951 - mae: 11.1120
149/277 [===============>..............] - ETA: 0s - loss: 188.6015 - mae: 10.9538
181/277 [==================>...........] - ETA: 0s - loss: 204.7605 - mae: 11.2787
213/277 [======================>.......] - ETA: 0s - loss: 204.7319 - mae: 11.3247
246/277 [=========================>....] - ETA: 0s - loss: 200.2951 - mae: 11.1384
277/277 [==============================] - 1s 2ms/step - loss: 193.3055 - mae: 10.9373 - val_loss: 195.0808 - val_mae: 10.4491
## Epoch 17/100
## 
  1/277 [..............................] - ETA: 0s - loss: 177.5818 - mae: 13.3260
 29/277 [==>...........................] - ETA: 0s - loss: 160.4969 - mae: 10.0110
 69/277 [======>.......................] - ETA: 0s - loss: 174.6364 - mae: 10.5643
121/277 [============>.................] - ETA: 0s - loss: 158.0266 - mae: 9.7943 
168/277 [=================>............] - ETA: 0s - loss: 172.8478 - mae: 10.0764
218/277 [======================>.......] - ETA: 0s - loss: 166.7665 - mae: 9.9969 
264/277 [===========================>..] - ETA: 0s - loss: 167.5959 - mae: 10.0152
277/277 [==============================] - 0s 2ms/step - loss: 165.8790 - mae: 9.9870 - val_loss: 174.8410 - val_mae: 9.7701
## Epoch 18/100
## 
  1/277 [..............................] - ETA: 0s - loss: 38.8995 - mae: 6.2369
 44/277 [===>..........................] - ETA: 0s - loss: 151.5585 - mae: 9.3741
 85/277 [========>.....................] - ETA: 0s - loss: 173.3969 - mae: 10.0970
124/277 [============>.................] - ETA: 0s - loss: 189.7710 - mae: 10.5626
162/277 [================>.............] - ETA: 0s - loss: 165.1036 - mae: 9.8893 
202/277 [====================>.........] - ETA: 0s - loss: 154.8850 - mae: 9.5812
252/277 [==========================>...] - ETA: 0s - loss: 147.9339 - mae: 9.3384
277/277 [==============================] - 0s 2ms/step - loss: 145.9337 - mae: 9.2504 - val_loss: 159.3753 - val_mae: 9.1675
## Epoch 19/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1.3303 - mae: 1.1534
 44/277 [===>..........................] - ETA: 0s - loss: 156.7526 - mae: 9.6551
 84/277 [========>.....................] - ETA: 0s - loss: 150.1416 - mae: 9.2887
126/277 [============>.................] - ETA: 0s - loss: 147.5104 - mae: 9.2271
171/277 [=================>............] - ETA: 0s - loss: 128.6940 - mae: 8.4770
207/277 [=====================>........] - ETA: 0s - loss: 133.3980 - mae: 8.8265
247/277 [=========================>....] - ETA: 0s - loss: 130.6034 - mae: 8.6878
277/277 [==============================] - 0s 2ms/step - loss: 130.7751 - mae: 8.6170 - val_loss: 147.7078 - val_mae: 8.6444
## Epoch 20/100
## 
  1/277 [..............................] - ETA: 0s - loss: 118.8691 - mae: 10.9027
 44/277 [===>..........................] - ETA: 0s - loss: 124.2834 - mae: 8.8551 
 86/277 [========>.....................] - ETA: 0s - loss: 110.7891 - mae: 8.2647
130/277 [=============>................] - ETA: 0s - loss: 120.7755 - mae: 8.3435
176/277 [==================>...........] - ETA: 0s - loss: 121.1595 - mae: 8.1647
223/277 [=======================>......] - ETA: 0s - loss: 112.3898 - mae: 7.9620
265/277 [===========================>..] - ETA: 0s - loss: 115.6167 - mae: 8.0625
277/277 [==============================] - 0s 2ms/step - loss: 119.0498 - mae: 8.0938 - val_loss: 139.5473 - val_mae: 8.2228
## Epoch 21/100
## 
  1/277 [..............................] - ETA: 0s - loss: 31.2692 - mae: 5.5919
 39/277 [===>..........................] - ETA: 0s - loss: 156.5255 - mae: 9.1163
 86/277 [========>.....................] - ETA: 0s - loss: 148.1644 - mae: 8.6228
130/277 [=============>................] - ETA: 0s - loss: 146.8643 - mae: 8.6457
174/277 [=================>............] - ETA: 0s - loss: 130.4024 - mae: 8.1136
225/277 [=======================>......] - ETA: 0s - loss: 117.6978 - mae: 7.8456
269/277 [============================>.] - ETA: 0s - loss: 112.2064 - mae: 7.7337
277/277 [==============================] - 0s 2ms/step - loss: 110.3592 - mae: 7.6722 - val_loss: 133.0455 - val_mae: 7.9094
## Epoch 22/100
## 
  1/277 [..............................] - ETA: 0s - loss: 362.5988 - mae: 19.0420
 49/277 [====>.........................] - ETA: 0s - loss: 67.1728 - mae: 6.1773  
 90/277 [========>.....................] - ETA: 0s - loss: 74.1623 - mae: 6.6813
133/277 [=============>................] - ETA: 0s - loss: 101.5433 - mae: 7.4198
178/277 [==================>...........] - ETA: 0s - loss: 100.3320 - mae: 7.3423
218/277 [======================>.......] - ETA: 0s - loss: 95.5202 - mae: 7.1441 
259/277 [===========================>..] - ETA: 0s - loss: 102.4949 - mae: 7.3181
277/277 [==============================] - 0s 2ms/step - loss: 103.0871 - mae: 7.3241 - val_loss: 127.7152 - val_mae: 7.7121
## Epoch 23/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2.7884 - mae: 1.6698
 49/277 [====>.........................] - ETA: 0s - loss: 94.7846 - mae: 6.9728
 90/277 [========>.....................] - ETA: 0s - loss: 89.8398 - mae: 6.6602
132/277 [=============>................] - ETA: 0s - loss: 95.5131 - mae: 6.9297
178/277 [==================>...........] - ETA: 0s - loss: 90.2914 - mae: 6.9572
219/277 [======================>.......] - ETA: 0s - loss: 82.0378 - mae: 6.6860
262/277 [===========================>..] - ETA: 0s - loss: 91.4537 - mae: 6.9493
277/277 [==============================] - 0s 2ms/step - loss: 97.0566 - mae: 7.0597 - val_loss: 123.6599 - val_mae: 7.5932
## Epoch 24/100
## 
  1/277 [..............................] - ETA: 0s - loss: 36.6868 - mae: 6.0570
 43/277 [===>..........................] - ETA: 0s - loss: 68.9691 - mae: 6.2242
 85/277 [========>.....................] - ETA: 0s - loss: 83.9570 - mae: 6.5022
124/277 [============>.................] - ETA: 0s - loss: 77.2198 - mae: 6.4669
164/277 [================>.............] - ETA: 0s - loss: 74.9079 - mae: 6.4832
208/277 [=====================>........] - ETA: 0s - loss: 81.8935 - mae: 6.4845
249/277 [=========================>....] - ETA: 0s - loss: 94.4328 - mae: 6.8651
277/277 [==============================] - 1s 2ms/step - loss: 92.4132 - mae: 6.8484 - val_loss: 120.3216 - val_mae: 7.4949
## Epoch 25/100
## 
  1/277 [..............................] - ETA: 0s - loss: 15.1013 - mae: 3.8860
 44/277 [===>..........................] - ETA: 0s - loss: 68.0681 - mae: 6.2942
 84/277 [========>.....................] - ETA: 0s - loss: 100.1532 - mae: 7.1447
119/277 [===========>..................] - ETA: 0s - loss: 86.0439 - mae: 6.4956 
137/277 [=============>................] - ETA: 0s - loss: 98.3743 - mae: 6.7630
156/277 [===============>..............] - ETA: 0s - loss: 95.8064 - mae: 6.7251
182/277 [==================>...........] - ETA: 0s - loss: 95.2944 - mae: 6.6366
216/277 [======================>.......] - ETA: 0s - loss: 90.1756 - mae: 6.5897
238/277 [========================>.....] - ETA: 0s - loss: 89.2744 - mae: 6.5789
268/277 [============================>.] - ETA: 0s - loss: 89.3537 - mae: 6.6470
277/277 [==============================] - 1s 2ms/step - loss: 88.6592 - mae: 6.6838 - val_loss: 117.8697 - val_mae: 7.4109
## Epoch 26/100
## 
  1/277 [..............................] - ETA: 0s - loss: 125.4063 - mae: 11.1985
 35/277 [==>...........................] - ETA: 0s - loss: 74.7262 - mae: 6.8731  
 73/277 [======>.......................] - ETA: 0s - loss: 55.2447 - mae: 5.7072
111/277 [===========>..................] - ETA: 0s - loss: 70.8249 - mae: 6.1593
150/277 [===============>..............] - ETA: 0s - loss: 73.9625 - mae: 6.2852
190/277 [===================>..........] - ETA: 0s - loss: 77.6642 - mae: 6.3744
224/277 [=======================>......] - ETA: 0s - loss: 85.9772 - mae: 6.5872
256/277 [==========================>...] - ETA: 0s - loss: 88.8372 - mae: 6.6410
277/277 [==============================] - 1s 2ms/step - loss: 85.9532 - mae: 6.5312 - val_loss: 115.9576 - val_mae: 7.3400
## Epoch 27/100
## 
  1/277 [..............................] - ETA: 0s - loss: 7.0020 - mae: 2.6461
 31/277 [==>...........................] - ETA: 0s - loss: 151.8154 - mae: 8.2416
 59/277 [=====>........................] - ETA: 0s - loss: 114.0043 - mae: 7.3110
 84/277 [========>.....................] - ETA: 0s - loss: 108.6196 - mae: 7.1062
115/277 [===========>..................] - ETA: 0s - loss: 102.0753 - mae: 6.9017
140/277 [==============>...............] - ETA: 0s - loss: 105.3423 - mae: 6.9571
168/277 [=================>............] - ETA: 0s - loss: 96.4316 - mae: 6.7580 
196/277 [====================>.........] - ETA: 0s - loss: 97.6762 - mae: 6.7849
225/277 [=======================>......] - ETA: 0s - loss: 90.8367 - mae: 6.5850
250/277 [==========================>...] - ETA: 0s - loss: 86.5004 - mae: 6.4698
274/277 [============================>.] - ETA: 0s - loss: 84.4992 - mae: 6.4579
277/277 [==============================] - 1s 3ms/step - loss: 83.7209 - mae: 6.4230 - val_loss: 114.5958 - val_mae: 7.2852
## Epoch 28/100
## 
  1/277 [..............................] - ETA: 0s - loss: 18.7639 - mae: 4.3317
 33/277 [==>...........................] - ETA: 0s - loss: 74.0665 - mae: 6.4641
 69/277 [======>.......................] - ETA: 0s - loss: 59.7194 - mae: 5.7588
104/277 [==========>...................] - ETA: 0s - loss: 75.5437 - mae: 6.1022
138/277 [=============>................] - ETA: 0s - loss: 83.3637 - mae: 6.4603
173/277 [=================>............] - ETA: 0s - loss: 77.2415 - mae: 6.2515
207/277 [=====================>........] - ETA: 0s - loss: 91.0831 - mae: 6.7394
237/277 [========================>.....] - ETA: 0s - loss: 84.1011 - mae: 6.3935
244/277 [=========================>....] - ETA: 0s - loss: 82.5704 - mae: 6.3391
260/277 [===========================>..] - ETA: 0s - loss: 80.6883 - mae: 6.2803
277/277 [==============================] - 1s 3ms/step - loss: 82.1333 - mae: 6.3422 - val_loss: 113.5550 - val_mae: 7.2378
## Epoch 29/100
## 
  1/277 [..............................] - ETA: 0s - loss: 64.8733 - mae: 8.0544
 33/277 [==>...........................] - ETA: 0s - loss: 122.7366 - mae: 7.8047
 62/277 [=====>........................] - ETA: 0s - loss: 90.2469 - mae: 6.8656 
 92/277 [========>.....................] - ETA: 0s - loss: 82.1102 - mae: 6.6920
120/277 [===========>..................] - ETA: 0s - loss: 81.2083 - mae: 6.4766
153/277 [===============>..............] - ETA: 0s - loss: 74.4008 - mae: 6.2985
184/277 [==================>...........] - ETA: 0s - loss: 77.8100 - mae: 6.3597
216/277 [======================>.......] - ETA: 0s - loss: 81.4052 - mae: 6.4893
250/277 [==========================>...] - ETA: 0s - loss: 81.4353 - mae: 6.3829
277/277 [==============================] - 1s 2ms/step - loss: 80.8544 - mae: 6.2915 - val_loss: 112.6878 - val_mae: 7.1929
## Epoch 30/100
## 
  1/277 [..............................] - ETA: 0s - loss: 6.0306 - mae: 2.4557
 44/277 [===>..........................] - ETA: 0s - loss: 74.3675 - mae: 5.6829
 78/277 [=======>......................] - ETA: 0s - loss: 68.1640 - mae: 5.7026
114/277 [===========>..................] - ETA: 0s - loss: 73.9685 - mae: 5.9343
140/277 [==============>...............] - ETA: 0s - loss: 70.9153 - mae: 5.9845
165/277 [================>.............] - ETA: 0s - loss: 66.3011 - mae: 5.7655
183/277 [==================>...........] - ETA: 0s - loss: 74.9436 - mae: 5.9920
213/277 [======================>.......] - ETA: 0s - loss: 74.5570 - mae: 6.1144
251/277 [==========================>...] - ETA: 0s - loss: 69.5908 - mae: 5.9494
277/277 [==============================] - 1s 2ms/step - loss: 79.5269 - mae: 6.2287 - val_loss: 111.8901 - val_mae: 7.1499
## Epoch 31/100
## 
  1/277 [..............................] - ETA: 0s - loss: 13.0483 - mae: 3.6122
 45/277 [===>..........................] - ETA: 0s - loss: 98.3823 - mae: 6.9155
 86/277 [========>.....................] - ETA: 0s - loss: 80.6095 - mae: 6.6522
124/277 [============>.................] - ETA: 0s - loss: 72.8317 - mae: 6.2329
166/277 [================>.............] - ETA: 0s - loss: 79.2110 - mae: 6.3746
208/277 [=====================>........] - ETA: 0s - loss: 84.3603 - mae: 6.4665
248/277 [=========================>....] - ETA: 0s - loss: 81.4842 - mae: 6.2959
277/277 [==============================] - 1s 2ms/step - loss: 78.4404 - mae: 6.1913 - val_loss: 111.2455 - val_mae: 7.1290
## Epoch 32/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.5583 - mae: 0.7472
 37/277 [===>..........................] - ETA: 0s - loss: 52.5240 - mae: 5.3215
 74/277 [=======>......................] - ETA: 0s - loss: 99.1174 - mae: 6.7379
113/277 [===========>..................] - ETA: 0s - loss: 87.3204 - mae: 6.3021
152/277 [===============>..............] - ETA: 0s - loss: 96.0233 - mae: 6.7949
185/277 [===================>..........] - ETA: 0s - loss: 86.1522 - mae: 6.4667
219/277 [======================>.......] - ETA: 0s - loss: 88.3702 - mae: 6.4944
255/277 [==========================>...] - ETA: 0s - loss: 81.9716 - mae: 6.3137
277/277 [==============================] - 1s 2ms/step - loss: 77.4460 - mae: 6.1444 - val_loss: 110.6579 - val_mae: 7.1027
## Epoch 33/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2.4235 - mae: 1.5568
 34/277 [==>...........................] - ETA: 0s - loss: 66.5254 - mae: 6.3259
 69/277 [======>.......................] - ETA: 0s - loss: 69.2674 - mae: 5.9669
102/277 [==========>...................] - ETA: 0s - loss: 83.6065 - mae: 6.4497
138/277 [=============>................] - ETA: 0s - loss: 90.7719 - mae: 6.7263
176/277 [==================>...........] - ETA: 0s - loss: 92.0909 - mae: 6.6674
211/277 [=====================>........] - ETA: 0s - loss: 85.4324 - mae: 6.3601
246/277 [=========================>....] - ETA: 0s - loss: 82.5369 - mae: 6.3315
277/277 [==============================] - 1s 2ms/step - loss: 76.6654 - mae: 6.1068 - val_loss: 110.0999 - val_mae: 7.0779
## Epoch 34/100
## 
  1/277 [..............................] - ETA: 0s - loss: 30.0242 - mae: 5.4794
 37/277 [===>..........................] - ETA: 0s - loss: 68.6483 - mae: 4.9721
 73/277 [======>.......................] - ETA: 0s - loss: 59.7588 - mae: 5.3339
110/277 [==========>...................] - ETA: 0s - loss: 59.3860 - mae: 5.3814
150/277 [===============>..............] - ETA: 0s - loss: 56.6401 - mae: 5.3226
194/277 [====================>.........] - ETA: 0s - loss: 70.0769 - mae: 5.8943
242/277 [=========================>....] - ETA: 0s - loss: 70.9474 - mae: 5.8532
277/277 [==============================] - 0s 2ms/step - loss: 75.8710 - mae: 6.0630 - val_loss: 109.7371 - val_mae: 7.0673
## Epoch 35/100
## 
  1/277 [..............................] - ETA: 0s - loss: 42.2682 - mae: 6.5014
 45/277 [===>..........................] - ETA: 0s - loss: 66.4187 - mae: 5.5560
 88/277 [========>.....................] - ETA: 0s - loss: 57.7023 - mae: 5.2472
125/277 [============>.................] - ETA: 0s - loss: 59.3940 - mae: 5.3419
164/277 [================>.............] - ETA: 0s - loss: 63.9839 - mae: 5.5578
197/277 [====================>.........] - ETA: 0s - loss: 66.9695 - mae: 5.5738
233/277 [========================>.....] - ETA: 0s - loss: 71.8843 - mae: 5.7625
277/277 [==============================] - ETA: 0s - loss: 75.1695 - mae: 6.0321
277/277 [==============================] - 0s 2ms/step - loss: 75.1695 - mae: 6.0321 - val_loss: 108.7624 - val_mae: 7.0221
## Epoch 36/100
## 
  1/277 [..............................] - ETA: 0s - loss: 56.8220 - mae: 7.5380
 47/277 [====>.........................] - ETA: 0s - loss: 97.6956 - mae: 6.6508
 91/277 [========>.....................] - ETA: 0s - loss: 89.4534 - mae: 6.3073
140/277 [==============>...............] - ETA: 0s - loss: 81.8387 - mae: 6.1085
185/277 [===================>..........] - ETA: 0s - loss: 74.5724 - mae: 5.9461
222/277 [=======================>......] - ETA: 0s - loss: 73.1351 - mae: 5.9570
264/277 [===========================>..] - ETA: 0s - loss: 76.6085 - mae: 6.0824
277/277 [==============================] - 0s 2ms/step - loss: 74.5393 - mae: 6.0093 - val_loss: 107.9444 - val_mae: 6.9830
## Epoch 37/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2.9225 - mae: 1.7095
 43/277 [===>..........................] - ETA: 0s - loss: 43.0786 - mae: 5.0837
 78/277 [=======>......................] - ETA: 0s - loss: 68.6246 - mae: 5.9403
117/277 [===========>..................] - ETA: 0s - loss: 82.4598 - mae: 6.3435
160/277 [================>.............] - ETA: 0s - loss: 86.8430 - mae: 6.3825
201/277 [====================>.........] - ETA: 0s - loss: 86.6068 - mae: 6.4686
244/277 [=========================>....] - ETA: 0s - loss: 76.4563 - mae: 6.0416
277/277 [==============================] - 0s 2ms/step - loss: 73.9175 - mae: 5.9728 - val_loss: 107.2739 - val_mae: 6.9460
## Epoch 38/100
## 
  1/277 [..............................] - ETA: 0s - loss: 3.2853 - mae: 1.8125
 40/277 [===>..........................] - ETA: 0s - loss: 58.9548 - mae: 5.5449
 85/277 [========>.....................] - ETA: 0s - loss: 76.2446 - mae: 5.9604
127/277 [============>.................] - ETA: 0s - loss: 71.8026 - mae: 5.7798
168/277 [=================>............] - ETA: 0s - loss: 78.6464 - mae: 6.0374
210/277 [=====================>........] - ETA: 0s - loss: 71.7028 - mae: 5.9099
249/277 [=========================>....] - ETA: 0s - loss: 66.4280 - mae: 5.7599
277/277 [==============================] - 0s 2ms/step - loss: 73.4725 - mae: 5.9409 - val_loss: 106.7466 - val_mae: 6.9167
## Epoch 39/100
## 
  1/277 [..............................] - ETA: 0s - loss: 30.7785 - mae: 5.5478
 41/277 [===>..........................] - ETA: 0s - loss: 171.7476 - mae: 8.9618
 81/277 [=======>......................] - ETA: 0s - loss: 130.1401 - mae: 7.6913
124/277 [============>.................] - ETA: 0s - loss: 91.8130 - mae: 6.2489 
170/277 [=================>............] - ETA: 0s - loss: 80.2830 - mae: 5.9817
209/277 [=====================>........] - ETA: 0s - loss: 76.2841 - mae: 5.9589
248/277 [=========================>....] - ETA: 0s - loss: 70.5711 - mae: 5.8008
277/277 [==============================] - 0s 2ms/step - loss: 73.0841 - mae: 5.9207 - val_loss: 106.1369 - val_mae: 6.8817
## Epoch 40/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1344.7140 - mae: 36.6703
 41/277 [===>..........................] - ETA: 0s - loss: 91.5725 - mae: 6.1308   
 87/277 [========>.....................] - ETA: 0s - loss: 75.5326 - mae: 5.9288
128/277 [============>.................] - ETA: 0s - loss: 82.2790 - mae: 5.9090
167/277 [=================>............] - ETA: 0s - loss: 84.4657 - mae: 6.1436
210/277 [=====================>........] - ETA: 0s - loss: 79.0337 - mae: 6.0611
253/277 [==========================>...] - ETA: 0s - loss: 77.5656 - mae: 6.1131
277/277 [==============================] - 1s 2ms/step - loss: 72.7539 - mae: 5.9116 - val_loss: 105.9580 - val_mae: 6.8655
## Epoch 41/100
## 
  1/277 [..............................] - ETA: 0s - loss: 4.6823 - mae: 2.1639
 49/277 [====>.........................] - ETA: 0s - loss: 53.3295 - mae: 5.2642
 97/277 [=========>....................] - ETA: 0s - loss: 59.8405 - mae: 5.5913
138/277 [=============>................] - ETA: 0s - loss: 65.5172 - mae: 5.7158
177/277 [==================>...........] - ETA: 0s - loss: 65.8102 - mae: 5.7705
218/277 [======================>.......] - ETA: 0s - loss: 77.9813 - mae: 6.0962
261/277 [===========================>..] - ETA: 0s - loss: 75.1299 - mae: 6.0224
277/277 [==============================] - 0s 2ms/step - loss: 72.4258 - mae: 5.8932 - val_loss: 105.3928 - val_mae: 6.8365
## Epoch 42/100
## 
  1/277 [..............................] - ETA: 0s - loss: 3.8274 - mae: 1.9564
 33/277 [==>...........................] - ETA: 0s - loss: 83.6880 - mae: 6.2190
 65/277 [======>.......................] - ETA: 0s - loss: 67.3144 - mae: 5.7048
108/277 [==========>...................] - ETA: 0s - loss: 65.7959 - mae: 5.6715
156/277 [===============>..............] - ETA: 0s - loss: 73.6954 - mae: 5.7537
198/277 [====================>.........] - ETA: 0s - loss: 72.9699 - mae: 5.7974
240/277 [========================>.....] - ETA: 0s - loss: 75.2734 - mae: 5.9717
277/277 [==============================] - 1s 2ms/step - loss: 72.0001 - mae: 5.8688 - val_loss: 104.7301 - val_mae: 6.8020
## Epoch 43/100
## 
  1/277 [..............................] - ETA: 0s - loss: 446.6432 - mae: 21.1339
 39/277 [===>..........................] - ETA: 0s - loss: 67.7567 - mae: 6.1845  
 85/277 [========>.....................] - ETA: 0s - loss: 60.6310 - mae: 5.8249
136/277 [=============>................] - ETA: 0s - loss: 69.1264 - mae: 6.2312
174/277 [=================>............] - ETA: 0s - loss: 72.3965 - mae: 6.0037
212/277 [=====================>........] - ETA: 0s - loss: 71.5778 - mae: 6.0685
255/277 [==========================>...] - ETA: 0s - loss: 71.8067 - mae: 5.8988
277/277 [==============================] - 0s 2ms/step - loss: 71.7030 - mae: 5.8666 - val_loss: 104.7677 - val_mae: 6.8044
## Epoch 44/100
## 
  1/277 [..............................] - ETA: 0s - loss: 30.2331 - mae: 5.4985
 42/277 [===>..........................] - ETA: 0s - loss: 106.8583 - mae: 7.0405
 81/277 [=======>......................] - ETA: 0s - loss: 80.1369 - mae: 6.1875 
125/277 [============>.................] - ETA: 0s - loss: 94.3983 - mae: 6.4428
172/277 [=================>............] - ETA: 0s - loss: 82.3229 - mae: 6.1752
212/277 [=====================>........] - ETA: 0s - loss: 79.1110 - mae: 6.1054
255/277 [==========================>...] - ETA: 0s - loss: 74.2714 - mae: 5.9205
277/277 [==============================] - 0s 2ms/step - loss: 71.2188 - mae: 5.8472 - val_loss: 104.2559 - val_mae: 6.7763
## Epoch 45/100
## 
  1/277 [..............................] - ETA: 0s - loss: 751.8633 - mae: 27.4201
 45/277 [===>..........................] - ETA: 0s - loss: 80.1836 - mae: 6.6558  
 93/277 [=========>....................] - ETA: 0s - loss: 73.9834 - mae: 6.1069
138/277 [=============>................] - ETA: 0s - loss: 71.3518 - mae: 5.9325
180/277 [==================>...........] - ETA: 0s - loss: 74.4697 - mae: 6.1103
228/277 [=======================>......] - ETA: 0s - loss: 79.5274 - mae: 6.2224
270/277 [============================>.] - ETA: 0s - loss: 71.0496 - mae: 5.8382
277/277 [==============================] - 0s 2ms/step - loss: 70.9932 - mae: 5.8293 - val_loss: 103.8831 - val_mae: 6.7543
## Epoch 46/100
## 
  1/277 [..............................] - ETA: 0s - loss: 4.8940 - mae: 2.2122
 41/277 [===>..........................] - ETA: 0s - loss: 122.7113 - mae: 7.0589
 83/277 [=======>......................] - ETA: 0s - loss: 72.8349 - mae: 5.4098 
126/277 [============>.................] - ETA: 0s - loss: 74.2091 - mae: 5.8376
165/277 [================>.............] - ETA: 0s - loss: 68.5122 - mae: 5.7248
209/277 [=====================>........] - ETA: 0s - loss: 73.6758 - mae: 5.7897
257/277 [==========================>...] - ETA: 0s - loss: 70.3754 - mae: 5.7835
277/277 [==============================] - 0s 2ms/step - loss: 70.8125 - mae: 5.8173 - val_loss: 103.6772 - val_mae: 6.7403
## Epoch 47/100
## 
  1/277 [..............................] - ETA: 0s - loss: 42.8022 - mae: 6.5423
 39/277 [===>..........................] - ETA: 0s - loss: 63.1804 - mae: 5.7915
 79/277 [=======>......................] - ETA: 0s - loss: 46.7947 - mae: 4.9792
124/277 [============>.................] - ETA: 0s - loss: 43.2721 - mae: 4.8763
165/277 [================>.............] - ETA: 0s - loss: 48.5229 - mae: 5.0400
198/277 [====================>.........] - ETA: 0s - loss: 59.8406 - mae: 5.4577
232/277 [========================>.....] - ETA: 0s - loss: 64.4538 - mae: 5.7004
267/277 [===========================>..] - ETA: 0s - loss: 70.8587 - mae: 5.8095
277/277 [==============================] - 1s 2ms/step - loss: 70.5816 - mae: 5.8151 - val_loss: 103.3573 - val_mae: 6.7184
## Epoch 48/100
## 
  1/277 [..............................] - ETA: 0s - loss: 11.7036 - mae: 3.4211
 39/277 [===>..........................] - ETA: 0s - loss: 31.7910 - mae: 3.9683
 78/277 [=======>......................] - ETA: 0s - loss: 36.1160 - mae: 4.4011
121/277 [============>.................] - ETA: 0s - loss: 66.8374 - mae: 5.4709
164/277 [================>.............] - ETA: 0s - loss: 61.2339 - mae: 5.3261
205/277 [=====================>........] - ETA: 0s - loss: 59.6168 - mae: 5.3472
252/277 [==========================>...] - ETA: 0s - loss: 67.3650 - mae: 5.5885
277/277 [==============================] - 0s 2ms/step - loss: 70.2842 - mae: 5.8041 - val_loss: 103.2209 - val_mae: 6.7055
## Epoch 49/100
## 
  1/277 [..............................] - ETA: 0s - loss: 70.5808 - mae: 8.4012
 52/277 [====>.........................] - ETA: 0s - loss: 84.8143 - mae: 6.2742
 86/277 [========>.....................] - ETA: 0s - loss: 70.2792 - mae: 5.9551
123/277 [============>.................] - ETA: 0s - loss: 59.0036 - mae: 5.4429
161/277 [================>.............] - ETA: 0s - loss: 66.2389 - mae: 5.8712
200/277 [====================>.........] - ETA: 0s - loss: 63.0336 - mae: 5.6984
238/277 [========================>.....] - ETA: 0s - loss: 69.7687 - mae: 5.9031
277/277 [==============================] - 1s 2ms/step - loss: 70.1668 - mae: 5.7984 - val_loss: 102.7793 - val_mae: 6.6768
## Epoch 50/100
## 
  1/277 [..............................] - ETA: 0s - loss: 15.3660 - mae: 3.9199
 44/277 [===>..........................] - ETA: 0s - loss: 78.6865 - mae: 6.3233
 85/277 [========>.....................] - ETA: 0s - loss: 66.1937 - mae: 5.8414
126/277 [============>.................] - ETA: 0s - loss: 69.6017 - mae: 5.7519
174/277 [=================>............] - ETA: 0s - loss: 77.3320 - mae: 6.0346
217/277 [======================>.......] - ETA: 0s - loss: 78.2694 - mae: 6.0498
257/277 [==========================>...] - ETA: 0s - loss: 72.5263 - mae: 5.8977
277/277 [==============================] - 0s 2ms/step - loss: 69.9686 - mae: 5.7838 - val_loss: 102.5882 - val_mae: 6.6617
## Epoch 51/100
## 
  1/277 [..............................] - ETA: 0s - loss: 35.2708 - mae: 5.9389
 43/277 [===>..........................] - ETA: 0s - loss: 54.2359 - mae: 5.2210
 90/277 [========>.....................] - ETA: 0s - loss: 53.9803 - mae: 5.3854
139/277 [==============>...............] - ETA: 0s - loss: 50.4596 - mae: 5.0744
183/277 [==================>...........] - ETA: 0s - loss: 59.5632 - mae: 5.4599
228/277 [=======================>......] - ETA: 0s - loss: 61.9157 - mae: 5.5334
270/277 [============================>.] - ETA: 0s - loss: 70.9380 - mae: 5.8001
277/277 [==============================] - 0s 2ms/step - loss: 69.9347 - mae: 5.7775 - val_loss: 102.4013 - val_mae: 6.6526
## Epoch 52/100
## 
  1/277 [..............................] - ETA: 0s - loss: 29.8421 - mae: 5.4628
 36/277 [==>...........................] - ETA: 0s - loss: 42.9271 - mae: 5.3565
 80/277 [=======>......................] - ETA: 0s - loss: 63.6347 - mae: 5.5236
125/277 [============>.................] - ETA: 0s - loss: 76.9612 - mae: 6.0486
169/277 [=================>............] - ETA: 0s - loss: 75.8110 - mae: 5.9236
214/277 [======================>.......] - ETA: 0s - loss: 80.5685 - mae: 6.1481
256/277 [==========================>...] - ETA: 0s - loss: 71.4545 - mae: 5.7840
277/277 [==============================] - 0s 2ms/step - loss: 69.6826 - mae: 5.7879 - val_loss: 102.0532 - val_mae: 6.6368
## Epoch 53/100
## 
  1/277 [..............................] - ETA: 0s - loss: 69.1299 - mae: 8.3144
 41/277 [===>..........................] - ETA: 0s - loss: 77.4980 - mae: 5.8156
 87/277 [========>.....................] - ETA: 0s - loss: 83.2313 - mae: 6.3714
132/277 [=============>................] - ETA: 0s - loss: 67.1470 - mae: 5.7513
173/277 [=================>............] - ETA: 0s - loss: 73.9119 - mae: 5.8843
218/277 [======================>.......] - ETA: 0s - loss: 68.6839 - mae: 5.6451
260/277 [===========================>..] - ETA: 0s - loss: 68.3245 - mae: 5.7509
277/277 [==============================] - 0s 2ms/step - loss: 69.5937 - mae: 5.7759 - val_loss: 101.8342 - val_mae: 6.6184
## Epoch 54/100
## 
  1/277 [..............................] - ETA: 0s - loss: 317.7411 - mae: 17.8253
 41/277 [===>..........................] - ETA: 0s - loss: 74.7845 - mae: 5.8960  
 82/277 [=======>......................] - ETA: 0s - loss: 82.4641 - mae: 6.0521
125/277 [============>.................] - ETA: 0s - loss: 78.5764 - mae: 6.0417
165/277 [================>.............] - ETA: 0s - loss: 69.0586 - mae: 5.6204
206/277 [=====================>........] - ETA: 0s - loss: 71.6075 - mae: 5.7058
250/277 [==========================>...] - ETA: 0s - loss: 70.9332 - mae: 5.7943
277/277 [==============================] - 0s 2ms/step - loss: 69.4775 - mae: 5.7684 - val_loss: 101.8306 - val_mae: 6.6170
## Epoch 55/100
## 
  1/277 [..............................] - ETA: 0s - loss: 17.4724 - mae: 4.1800
 46/277 [===>..........................] - ETA: 0s - loss: 83.4510 - mae: 6.0453
 91/277 [========>.....................] - ETA: 0s - loss: 73.3079 - mae: 6.1316
136/277 [=============>................] - ETA: 0s - loss: 79.7879 - mae: 6.0157
189/277 [===================>..........] - ETA: 0s - loss: 75.2289 - mae: 5.9614
232/277 [========================>.....] - ETA: 0s - loss: 73.0497 - mae: 5.8589
266/277 [===========================>..] - ETA: 0s - loss: 71.1121 - mae: 5.8356
277/277 [==============================] - 0s 2ms/step - loss: 69.2449 - mae: 5.7658 - val_loss: 101.4162 - val_mae: 6.5916
## Epoch 56/100
## 
  1/277 [..............................] - ETA: 0s - loss: 7.7467 - mae: 2.7833
 40/277 [===>..........................] - ETA: 0s - loss: 129.4839 - mae: 7.6905
 67/277 [======>.......................] - ETA: 0s - loss: 109.7921 - mae: 7.4568
 89/277 [========>.....................] - ETA: 0s - loss: 89.6804 - mae: 6.5680 
114/277 [===========>..................] - ETA: 0s - loss: 84.8932 - mae: 6.4497
148/277 [===============>..............] - ETA: 0s - loss: 75.3563 - mae: 6.2047
195/277 [====================>.........] - ETA: 0s - loss: 68.6809 - mae: 6.0122
238/277 [========================>.....] - ETA: 0s - loss: 74.3196 - mae: 6.0296
276/277 [============================>.] - ETA: 0s - loss: 69.1532 - mae: 5.7549
277/277 [==============================] - 1s 2ms/step - loss: 69.0651 - mae: 5.7582 - val_loss: 101.1499 - val_mae: 6.5670
## Epoch 57/100
## 
  1/277 [..............................] - ETA: 0s - loss: 30.9224 - mae: 5.5608
 45/277 [===>..........................] - ETA: 0s - loss: 64.9503 - mae: 5.7544
 88/277 [========>.....................] - ETA: 0s - loss: 55.6725 - mae: 5.5938
123/277 [============>.................] - ETA: 0s - loss: 49.8255 - mae: 5.2112
163/277 [================>.............] - ETA: 0s - loss: 54.9019 - mae: 5.2362
205/277 [=====================>........] - ETA: 0s - loss: 62.2024 - mae: 5.5397
246/277 [=========================>....] - ETA: 0s - loss: 62.8937 - mae: 5.6240
277/277 [==============================] - 0s 2ms/step - loss: 68.9337 - mae: 5.7464 - val_loss: 101.1462 - val_mae: 6.5679
## Epoch 58/100
## 
  1/277 [..............................] - ETA: 0s - loss: 43.3900 - mae: 6.5871
 43/277 [===>..........................] - ETA: 0s - loss: 69.9133 - mae: 5.8531
 84/277 [========>.....................] - ETA: 0s - loss: 70.1723 - mae: 6.0321
124/277 [============>.................] - ETA: 0s - loss: 57.1984 - mae: 5.4020
160/277 [================>.............] - ETA: 0s - loss: 58.0841 - mae: 5.4041
200/277 [====================>.........] - ETA: 0s - loss: 68.6313 - mae: 5.6547
245/277 [=========================>....] - ETA: 0s - loss: 72.2832 - mae: 5.8695
277/277 [==============================] - 0s 2ms/step - loss: 68.6750 - mae: 5.7385 - val_loss: 100.6998 - val_mae: 6.5493
## Epoch 59/100
## 
  1/277 [..............................] - ETA: 0s - loss: 10.9709 - mae: 3.3122
 55/277 [====>.........................] - ETA: 0s - loss: 70.8455 - mae: 5.5412
 96/277 [=========>....................] - ETA: 0s - loss: 58.8152 - mae: 5.0923
129/277 [============>.................] - ETA: 0s - loss: 65.1713 - mae: 5.5929
160/277 [================>.............] - ETA: 0s - loss: 68.9981 - mae: 5.7315
191/277 [===================>..........] - ETA: 0s - loss: 66.1312 - mae: 5.7052
231/277 [========================>.....] - ETA: 0s - loss: 61.9367 - mae: 5.6280
276/277 [============================>.] - ETA: 0s - loss: 68.7031 - mae: 5.7489
277/277 [==============================] - 1s 2ms/step - loss: 68.5044 - mae: 5.7414 - val_loss: 100.4024 - val_mae: 6.5278
## Epoch 60/100
## 
  1/277 [..............................] - ETA: 0s - loss: 101.5988 - mae: 10.0796
 45/277 [===>..........................] - ETA: 0s - loss: 52.6250 - mae: 5.4963  
 86/277 [========>.....................] - ETA: 0s - loss: 76.7285 - mae: 5.8863
130/277 [=============>................] - ETA: 0s - loss: 60.2890 - mae: 5.2880
171/277 [=================>............] - ETA: 0s - loss: 69.5865 - mae: 5.7269
198/277 [====================>.........] - ETA: 0s - loss: 69.3199 - mae: 5.7476
219/277 [======================>.......] - ETA: 0s - loss: 68.2994 - mae: 5.7582
241/277 [=========================>....] - ETA: 0s - loss: 70.8600 - mae: 5.8300
275/277 [============================>.] - ETA: 0s - loss: 68.8755 - mae: 5.7445
277/277 [==============================] - 1s 2ms/step - loss: 68.4401 - mae: 5.7232 - val_loss: 100.5118 - val_mae: 6.5335
## Epoch 61/100
## 
  1/277 [..............................] - ETA: 0s - loss: 5.1734 - mae: 2.2745
 44/277 [===>..........................] - ETA: 0s - loss: 66.1372 - mae: 5.3170
 82/277 [=======>......................] - ETA: 0s - loss: 94.2052 - mae: 6.4281
124/277 [============>.................] - ETA: 0s - loss: 76.9003 - mae: 5.8875
171/277 [=================>............] - ETA: 0s - loss: 67.0620 - mae: 5.6685
216/277 [======================>.......] - ETA: 0s - loss: 60.6853 - mae: 5.4353
258/277 [==========================>...] - ETA: 0s - loss: 60.9671 - mae: 5.4418
277/277 [==============================] - 0s 2ms/step - loss: 68.1411 - mae: 5.7246 - val_loss: 100.2599 - val_mae: 6.5164
## Epoch 62/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.8973 - mae: 0.9473
 43/277 [===>..........................] - ETA: 0s - loss: 74.8944 - mae: 6.2788
 90/277 [========>.....................] - ETA: 0s - loss: 73.6276 - mae: 5.9977
133/277 [=============>................] - ETA: 0s - loss: 79.4399 - mae: 6.2041
179/277 [==================>...........] - ETA: 0s - loss: 65.7608 - mae: 5.6321
225/277 [=======================>......] - ETA: 0s - loss: 65.1961 - mae: 5.7101
266/277 [===========================>..] - ETA: 0s - loss: 69.5295 - mae: 5.7821
277/277 [==============================] - 0s 2ms/step - loss: 68.0830 - mae: 5.7095 - val_loss: 99.9875 - val_mae: 6.5037
## Epoch 63/100
## 
  1/277 [..............................] - ETA: 0s - loss: 4.6760 - mae: 2.1624
 37/277 [===>..........................] - ETA: 0s - loss: 65.9521 - mae: 6.2311
 69/277 [======>.......................] - ETA: 0s - loss: 88.1376 - mae: 6.8568
105/277 [==========>...................] - ETA: 0s - loss: 89.1038 - mae: 6.4749
144/277 [==============>...............] - ETA: 0s - loss: 77.0053 - mae: 6.0275
189/277 [===================>..........] - ETA: 0s - loss: 67.8562 - mae: 5.7849
236/277 [========================>.....] - ETA: 0s - loss: 74.0777 - mae: 5.9514
276/277 [============================>.] - ETA: 0s - loss: 68.0960 - mae: 5.7207
277/277 [==============================] - 1s 2ms/step - loss: 67.8545 - mae: 5.7040 - val_loss: 99.9614 - val_mae: 6.5060
## Epoch 64/100
## 
  1/277 [..............................] - ETA: 0s - loss: 81.9921 - mae: 9.0550
 42/277 [===>..........................] - ETA: 0s - loss: 46.8340 - mae: 5.6296
 76/277 [=======>......................] - ETA: 0s - loss: 53.3008 - mae: 5.5580
102/277 [==========>...................] - ETA: 0s - loss: 56.5283 - mae: 5.5022
120/277 [===========>..................] - ETA: 0s - loss: 61.8926 - mae: 5.6110
140/277 [==============>...............] - ETA: 0s - loss: 65.0669 - mae: 5.7340
170/277 [=================>............] - ETA: 0s - loss: 59.1132 - mae: 5.5480
209/277 [=====================>........] - ETA: 0s - loss: 59.3410 - mae: 5.5741
260/277 [===========================>..] - ETA: 0s - loss: 67.6065 - mae: 5.6942
277/277 [==============================] - 1s 2ms/step - loss: 67.7093 - mae: 5.7012 - val_loss: 99.8489 - val_mae: 6.5043
## Epoch 65/100
## 
  1/277 [..............................] - ETA: 0s - loss: 98.3554 - mae: 9.9174
 38/277 [===>..........................] - ETA: 0s - loss: 94.6132 - mae: 6.0745
 71/277 [======>.......................] - ETA: 0s - loss: 97.8551 - mae: 6.1604
105/277 [==========>...................] - ETA: 0s - loss: 83.8890 - mae: 5.8116
137/277 [=============>................] - ETA: 0s - loss: 83.2038 - mae: 5.9568
167/277 [=================>............] - ETA: 0s - loss: 73.2222 - mae: 5.6604
194/277 [====================>.........] - ETA: 0s - loss: 73.7658 - mae: 5.8281
226/277 [=======================>......] - ETA: 0s - loss: 71.6367 - mae: 5.8041
260/277 [===========================>..] - ETA: 0s - loss: 69.7541 - mae: 5.7825
277/277 [==============================] - 1s 2ms/step - loss: 67.5865 - mae: 5.7098 - val_loss: 99.6956 - val_mae: 6.4946
## Epoch 66/100
## 
  1/277 [..............................] - ETA: 0s - loss: 15.6000 - mae: 3.9497
 33/277 [==>...........................] - ETA: 0s - loss: 57.3648 - mae: 4.4956
 62/277 [=====>........................] - ETA: 0s - loss: 50.9141 - mae: 4.6393
 91/277 [========>.....................] - ETA: 0s - loss: 58.6294 - mae: 5.2326
124/277 [============>.................] - ETA: 0s - loss: 57.6787 - mae: 5.2836
157/277 [================>.............] - ETA: 0s - loss: 55.7166 - mae: 5.2750
187/277 [===================>..........] - ETA: 0s - loss: 51.7807 - mae: 5.1125
219/277 [======================>.......] - ETA: 0s - loss: 61.1788 - mae: 5.4544
253/277 [==========================>...] - ETA: 0s - loss: 65.6082 - mae: 5.6225
277/277 [==============================] - 1s 2ms/step - loss: 67.4063 - mae: 5.6902 - val_loss: 99.5173 - val_mae: 6.4829
## Epoch 67/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.2241 - mae: 0.4734
 33/277 [==>...........................] - ETA: 0s - loss: 38.2914 - mae: 4.8369
 62/277 [=====>........................] - ETA: 0s - loss: 45.3550 - mae: 4.8933
 89/277 [========>.....................] - ETA: 0s - loss: 63.2350 - mae: 5.2512
120/277 [===========>..................] - ETA: 0s - loss: 64.0168 - mae: 5.4163
157/277 [================>.............] - ETA: 0s - loss: 62.1180 - mae: 5.4167
197/277 [====================>.........] - ETA: 0s - loss: 58.1508 - mae: 5.3345
244/277 [=========================>....] - ETA: 0s - loss: 57.3380 - mae: 5.2929
277/277 [==============================] - 1s 2ms/step - loss: 67.3294 - mae: 5.6850 - val_loss: 99.2112 - val_mae: 6.4696
## Epoch 68/100
## 
  1/277 [..............................] - ETA: 0s - loss: 15.1919 - mae: 3.8977
 46/277 [===>..........................] - ETA: 0s - loss: 67.0652 - mae: 6.0225
 90/277 [========>.....................] - ETA: 0s - loss: 69.8427 - mae: 5.9482
130/277 [=============>................] - ETA: 0s - loss: 78.7944 - mae: 6.0735
172/277 [=================>............] - ETA: 0s - loss: 74.1829 - mae: 5.9814
215/277 [======================>.......] - ETA: 0s - loss: 67.2720 - mae: 5.6966
257/277 [==========================>...] - ETA: 0s - loss: 65.1596 - mae: 5.6554
277/277 [==============================] - 0s 2ms/step - loss: 67.2547 - mae: 5.6799 - val_loss: 99.1550 - val_mae: 6.4629
## Epoch 69/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.0015 - mae: 0.0392
 39/277 [===>..........................] - ETA: 0s - loss: 78.8138 - mae: 6.1714
 75/277 [=======>......................] - ETA: 0s - loss: 71.7271 - mae: 5.9229
102/277 [==========>...................] - ETA: 0s - loss: 65.3415 - mae: 5.6873
126/277 [============>.................] - ETA: 0s - loss: 73.4357 - mae: 5.8843
160/277 [================>.............] - ETA: 0s - loss: 68.1357 - mae: 5.7563
203/277 [====================>.........] - ETA: 0s - loss: 61.9946 - mae: 5.5251
244/277 [=========================>....] - ETA: 0s - loss: 71.0150 - mae: 5.7824
277/277 [==============================] - 1s 2ms/step - loss: 67.1130 - mae: 5.6858 - val_loss: 99.1230 - val_mae: 6.4766
## Epoch 70/100
## 
  1/277 [..............................] - ETA: 0s - loss: 20.2368 - mae: 4.4985
 41/277 [===>..........................] - ETA: 0s - loss: 63.2644 - mae: 5.8663
 78/277 [=======>......................] - ETA: 0s - loss: 68.1757 - mae: 6.1437
114/277 [===========>..................] - ETA: 0s - loss: 59.9964 - mae: 5.5307
150/277 [===============>..............] - ETA: 0s - loss: 65.8492 - mae: 5.6186
188/277 [===================>..........] - ETA: 0s - loss: 63.6514 - mae: 5.6092
232/277 [========================>.....] - ETA: 0s - loss: 62.3269 - mae: 5.5048
277/277 [==============================] - 0s 2ms/step - loss: 66.9939 - mae: 5.6717 - val_loss: 98.8729 - val_mae: 6.4618
## Epoch 71/100
## 
  1/277 [..............................] - ETA: 0s - loss: 11.6488 - mae: 3.4130
 40/277 [===>..........................] - ETA: 0s - loss: 46.4611 - mae: 5.3455
 85/277 [========>.....................] - ETA: 0s - loss: 52.6090 - mae: 5.6406
128/277 [============>.................] - ETA: 0s - loss: 45.7088 - mae: 5.2026
168/277 [=================>............] - ETA: 0s - loss: 58.8602 - mae: 5.4065
213/277 [======================>.......] - ETA: 0s - loss: 61.7209 - mae: 5.4902
251/277 [==========================>...] - ETA: 0s - loss: 68.2607 - mae: 5.7079
271/277 [============================>.] - ETA: 0s - loss: 66.4497 - mae: 5.6517
277/277 [==============================] - 1s 2ms/step - loss: 66.8713 - mae: 5.6850 - val_loss: 98.4413 - val_mae: 6.4330
## Epoch 72/100
## 
  1/277 [..............................] - ETA: 0s - loss: 175.9678 - mae: 13.2653
 50/277 [====>.........................] - ETA: 0s - loss: 75.0306 - mae: 6.6128  
 93/277 [=========>....................] - ETA: 0s - loss: 59.7873 - mae: 5.4937
134/277 [=============>................] - ETA: 0s - loss: 60.2024 - mae: 5.5356
180/277 [==================>...........] - ETA: 0s - loss: 67.7152 - mae: 5.8300
227/277 [=======================>......] - ETA: 0s - loss: 65.5116 - mae: 5.6644
263/277 [===========================>..] - ETA: 0s - loss: 67.3082 - mae: 5.6286
277/277 [==============================] - 0s 2ms/step - loss: 66.7796 - mae: 5.6628 - val_loss: 98.5581 - val_mae: 6.4457
## Epoch 73/100
## 
  1/277 [..............................] - ETA: 0s - loss: 21.3950 - mae: 4.6255
 44/277 [===>..........................] - ETA: 0s - loss: 90.5564 - mae: 6.2456
 91/277 [========>.....................] - ETA: 0s - loss: 82.4828 - mae: 6.0511
134/277 [=============>................] - ETA: 0s - loss: 65.2553 - mae: 5.3478
171/277 [=================>............] - ETA: 0s - loss: 63.2187 - mae: 5.3595
210/277 [=====================>........] - ETA: 0s - loss: 71.0258 - mae: 5.6848
248/277 [=========================>....] - ETA: 0s - loss: 67.5817 - mae: 5.6159
277/277 [==============================] - 0s 2ms/step - loss: 66.7189 - mae: 5.6643 - val_loss: 98.3738 - val_mae: 6.4323
## Epoch 74/100
## 
  1/277 [..............................] - ETA: 0s - loss: 18.6256 - mae: 4.3157
 43/277 [===>..........................] - ETA: 0s - loss: 39.8036 - mae: 5.0018
 86/277 [========>.....................] - ETA: 0s - loss: 49.2727 - mae: 4.9171
136/277 [=============>................] - ETA: 0s - loss: 54.2819 - mae: 5.1039
178/277 [==================>...........] - ETA: 0s - loss: 63.6019 - mae: 5.3897
220/277 [======================>.......] - ETA: 0s - loss: 70.3834 - mae: 5.7052
264/277 [===========================>..] - ETA: 0s - loss: 68.3469 - mae: 5.7096
277/277 [==============================] - 0s 2ms/step - loss: 66.6968 - mae: 5.6457 - val_loss: 98.3512 - val_mae: 6.4395
## Epoch 75/100
## 
  1/277 [..............................] - ETA: 0s - loss: 19.9587 - mae: 4.4675
 45/277 [===>..........................] - ETA: 0s - loss: 26.2760 - mae: 3.7728
 88/277 [========>.....................] - ETA: 0s - loss: 47.2317 - mae: 4.8635
137/277 [=============>................] - ETA: 0s - loss: 68.3084 - mae: 5.6767
188/277 [===================>..........] - ETA: 0s - loss: 63.2448 - mae: 5.5612
231/277 [========================>.....] - ETA: 0s - loss: 64.5474 - mae: 5.6354
275/277 [============================>.] - ETA: 0s - loss: 66.9925 - mae: 5.6795
277/277 [==============================] - 0s 2ms/step - loss: 66.5911 - mae: 5.6579 - val_loss: 98.2491 - val_mae: 6.4329
## Epoch 76/100
## 
  1/277 [..............................] - ETA: 0s - loss: 35.0406 - mae: 5.9195
 47/277 [====>.........................] - ETA: 0s - loss: 104.1523 - mae: 7.1825
 92/277 [========>.....................] - ETA: 0s - loss: 71.8099 - mae: 5.8007 
143/277 [==============>...............] - ETA: 0s - loss: 63.9692 - mae: 5.6941
190/277 [===================>..........] - ETA: 0s - loss: 62.1535 - mae: 5.6147
232/277 [========================>.....] - ETA: 0s - loss: 66.9799 - mae: 5.7001
275/277 [============================>.] - ETA: 0s - loss: 66.8648 - mae: 5.6733
277/277 [==============================] - 0s 2ms/step - loss: 66.4783 - mae: 5.6548 - val_loss: 98.1889 - val_mae: 6.4320
## Epoch 77/100
## 
  1/277 [..............................] - ETA: 0s - loss: 5.1546 - mae: 2.2704
 43/277 [===>..........................] - ETA: 0s - loss: 57.6312 - mae: 5.2890
 85/277 [========>.....................] - ETA: 0s - loss: 50.6531 - mae: 5.2296
127/277 [============>.................] - ETA: 0s - loss: 55.0141 - mae: 5.2925
171/277 [=================>............] - ETA: 0s - loss: 63.9125 - mae: 5.5830
213/277 [======================>.......] - ETA: 0s - loss: 64.4736 - mae: 5.7098
256/277 [==========================>...] - ETA: 0s - loss: 63.6902 - mae: 5.6170
277/277 [==============================] - 0s 2ms/step - loss: 66.4040 - mae: 5.6540 - val_loss: 97.9753 - val_mae: 6.4241
## Epoch 78/100
## 
  1/277 [..............................] - ETA: 0s - loss: 36.0519 - mae: 6.0043
 45/277 [===>..........................] - ETA: 0s - loss: 37.1263 - mae: 4.4653
 87/277 [========>.....................] - ETA: 0s - loss: 84.7643 - mae: 6.1591
127/277 [============>.................] - ETA: 0s - loss: 79.4556 - mae: 6.0482
164/277 [================>.............] - ETA: 0s - loss: 71.7301 - mae: 5.9231
203/277 [====================>.........] - ETA: 0s - loss: 70.3903 - mae: 5.9714
243/277 [=========================>....] - ETA: 0s - loss: 69.0547 - mae: 5.8577
277/277 [==============================] - 0s 2ms/step - loss: 66.2995 - mae: 5.6435 - val_loss: 97.7592 - val_mae: 6.4093
## Epoch 79/100
## 
  1/277 [..............................] - ETA: 0s - loss: 344.6188 - mae: 18.5639
 33/277 [==>...........................] - ETA: 0s - loss: 100.9037 - mae: 7.6970 
 60/277 [=====>........................] - ETA: 0s - loss: 68.5026 - mae: 6.0180 
 92/277 [========>.....................] - ETA: 0s - loss: 65.8339 - mae: 5.9190
137/277 [=============>................] - ETA: 0s - loss: 64.0885 - mae: 5.8385
180/277 [==================>...........] - ETA: 0s - loss: 65.3245 - mae: 5.7392
222/277 [=======================>......] - ETA: 0s - loss: 67.8588 - mae: 5.8320
266/277 [===========================>..] - ETA: 0s - loss: 67.7836 - mae: 5.6984
277/277 [==============================] - 1s 2ms/step - loss: 66.2278 - mae: 5.6424 - val_loss: 97.5917 - val_mae: 6.4001
## Epoch 80/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2.8450 - mae: 1.6867
 45/277 [===>..........................] - ETA: 0s - loss: 31.2738 - mae: 4.1627
 85/277 [========>.....................] - ETA: 0s - loss: 48.3300 - mae: 4.8449
126/277 [============>.................] - ETA: 0s - loss: 54.4502 - mae: 5.0823
165/277 [================>.............] - ETA: 0s - loss: 51.7162 - mae: 5.1019
199/277 [====================>.........] - ETA: 0s - loss: 55.2647 - mae: 5.2803
241/277 [=========================>....] - ETA: 0s - loss: 56.8887 - mae: 5.3379
277/277 [==============================] - 0s 2ms/step - loss: 66.1612 - mae: 5.6326 - val_loss: 97.3806 - val_mae: 6.3919
## Epoch 81/100
## 
  1/277 [..............................] - ETA: 0s - loss: 17.6122 - mae: 4.1967
 44/277 [===>..........................] - ETA: 0s - loss: 52.7421 - mae: 5.1063
 92/277 [========>.....................] - ETA: 0s - loss: 66.0379 - mae: 5.3286
140/277 [==============>...............] - ETA: 0s - loss: 60.8456 - mae: 5.2364
183/277 [==================>...........] - ETA: 0s - loss: 69.1072 - mae: 5.5794
229/277 [=======================>......] - ETA: 0s - loss: 65.7659 - mae: 5.5596
271/277 [============================>.] - ETA: 0s - loss: 66.5819 - mae: 5.6314
277/277 [==============================] - 0s 2ms/step - loss: 66.0998 - mae: 5.6340 - val_loss: 97.2080 - val_mae: 6.3785
## Epoch 82/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.1697 - mae: 0.4120
 44/277 [===>..........................] - ETA: 0s - loss: 64.7446 - mae: 5.7115
 88/277 [========>.....................] - ETA: 0s - loss: 75.5933 - mae: 6.0727
142/277 [==============>...............] - ETA: 0s - loss: 74.1996 - mae: 5.9960
184/277 [==================>...........] - ETA: 0s - loss: 67.1938 - mae: 5.7245
223/277 [=======================>......] - ETA: 0s - loss: 73.9325 - mae: 5.9219
265/277 [===========================>..] - ETA: 0s - loss: 67.7556 - mae: 5.6919
277/277 [==============================] - 1s 2ms/step - loss: 65.9821 - mae: 5.6226 - val_loss: 97.1254 - val_mae: 6.3719
## Epoch 83/100
## 
  1/277 [..............................] - ETA: 0s - loss: 216.5576 - mae: 14.7159
 46/277 [===>..........................] - ETA: 0s - loss: 65.2574 - mae: 5.7520  
 95/277 [=========>....................] - ETA: 0s - loss: 54.6726 - mae: 5.2676
140/277 [==============>...............] - ETA: 0s - loss: 49.9950 - mae: 5.1476
182/277 [==================>...........] - ETA: 0s - loss: 49.7283 - mae: 5.1856
228/277 [=======================>......] - ETA: 0s - loss: 51.7551 - mae: 5.2620
254/277 [==========================>...] - ETA: 0s - loss: 57.4414 - mae: 5.3292
269/277 [============================>.] - ETA: 0s - loss: 65.9208 - mae: 5.5920
277/277 [==============================] - 1s 2ms/step - loss: 65.8803 - mae: 5.6194 - val_loss: 97.0203 - val_mae: 6.3697
## Epoch 84/100
## 
  1/277 [..............................] - ETA: 0s - loss: 538.3928 - mae: 23.2033
 45/277 [===>..........................] - ETA: 0s - loss: 39.7227 - mae: 4.4549  
 86/277 [========>.....................] - ETA: 0s - loss: 43.5878 - mae: 4.6434
125/277 [============>.................] - ETA: 0s - loss: 52.8926 - mae: 5.2400
166/277 [================>.............] - ETA: 0s - loss: 57.1711 - mae: 5.4008
210/277 [=====================>........] - ETA: 0s - loss: 64.1602 - mae: 5.6430
252/277 [==========================>...] - ETA: 0s - loss: 64.5588 - mae: 5.5725
277/277 [==============================] - 0s 2ms/step - loss: 65.9066 - mae: 5.6154 - val_loss: 96.9836 - val_mae: 6.3707
## Epoch 85/100
## 
  1/277 [..............................] - ETA: 0s - loss: 89.1984 - mae: 9.4445
 41/277 [===>..........................] - ETA: 0s - loss: 105.0209 - mae: 6.8717
 88/277 [========>.....................] - ETA: 0s - loss: 87.4706 - mae: 6.1778 
134/277 [=============>................] - ETA: 0s - loss: 86.1636 - mae: 6.2501
179/277 [==================>...........] - ETA: 0s - loss: 76.0251 - mae: 5.8062
213/277 [======================>.......] - ETA: 0s - loss: 69.5946 - mae: 5.6758
232/277 [========================>.....] - ETA: 0s - loss: 66.1095 - mae: 5.5661
246/277 [=========================>....] - ETA: 0s - loss: 67.2922 - mae: 5.5881
269/277 [============================>.] - ETA: 0s - loss: 66.9308 - mae: 5.6490
277/277 [==============================] - 1s 2ms/step - loss: 65.7163 - mae: 5.6082 - val_loss: 96.9425 - val_mae: 6.3725
## Epoch 86/100
## 
  1/277 [..............................] - ETA: 0s - loss: 2.3164 - mae: 1.5220
 48/277 [====>.........................] - ETA: 0s - loss: 36.5907 - mae: 4.7473
 90/277 [========>.....................] - ETA: 0s - loss: 44.5515 - mae: 4.9339
133/277 [=============>................] - ETA: 0s - loss: 55.2776 - mae: 5.4131
172/277 [=================>............] - ETA: 0s - loss: 66.1747 - mae: 5.6075
217/277 [======================>.......] - ETA: 0s - loss: 65.6178 - mae: 5.5373
267/277 [===========================>..] - ETA: 0s - loss: 66.6758 - mae: 5.6161
277/277 [==============================] - 0s 2ms/step - loss: 65.6771 - mae: 5.6081 - val_loss: 96.7218 - val_mae: 6.3645
## Epoch 87/100
## 
  1/277 [..............................] - ETA: 0s - loss: 1524.6832 - mae: 39.0472
 46/277 [===>..........................] - ETA: 0s - loss: 108.8154 - mae: 6.2636  
 89/277 [========>.....................] - ETA: 0s - loss: 79.5461 - mae: 5.7010 
137/277 [=============>................] - ETA: 0s - loss: 74.4064 - mae: 5.7378
179/277 [==================>...........] - ETA: 0s - loss: 65.9164 - mae: 5.4031
218/277 [======================>.......] - ETA: 0s - loss: 66.9543 - mae: 5.5689
263/277 [===========================>..] - ETA: 0s - loss: 67.7607 - mae: 5.6876
277/277 [==============================] - 0s 2ms/step - loss: 65.6109 - mae: 5.6050 - val_loss: 96.7319 - val_mae: 6.3625
## Epoch 88/100
## 
  1/277 [..............................] - ETA: 0s - loss: 19.2867 - mae: 4.3917
 43/277 [===>..........................] - ETA: 0s - loss: 75.6506 - mae: 5.2991
 77/277 [=======>......................] - ETA: 0s - loss: 71.9247 - mae: 5.6375
116/277 [===========>..................] - ETA: 0s - loss: 70.2556 - mae: 5.7820
163/277 [================>.............] - ETA: 0s - loss: 63.3181 - mae: 5.5228
205/277 [=====================>........] - ETA: 0s - loss: 66.9429 - mae: 5.5091
250/277 [==========================>...] - ETA: 0s - loss: 64.9585 - mae: 5.5650
277/277 [==============================] - 0s 2ms/step - loss: 65.6142 - mae: 5.6014 - val_loss: 96.6681 - val_mae: 6.3602
## Epoch 89/100
## 
  1/277 [..............................] - ETA: 0s - loss: 30.7491 - mae: 5.5452
 54/277 [====>.........................] - ETA: 0s - loss: 85.3043 - mae: 6.2885
101/277 [=========>....................] - ETA: 0s - loss: 62.2463 - mae: 5.3706
145/277 [==============>...............] - ETA: 0s - loss: 56.4659 - mae: 5.1505
197/277 [====================>.........] - ETA: 0s - loss: 53.6202 - mae: 5.1833
243/277 [=========================>....] - ETA: 0s - loss: 62.6627 - mae: 5.4482
277/277 [==============================] - 1s 2ms/step - loss: 65.4899 - mae: 5.6002 - val_loss: 96.6109 - val_mae: 6.3643
## Epoch 90/100
## 
  1/277 [..............................] - ETA: 0s - loss: 4.9169 - mae: 2.2174
 39/277 [===>..........................] - ETA: 0s - loss: 69.9546 - mae: 6.1920
 95/277 [=========>....................] - ETA: 0s - loss: 73.5443 - mae: 5.7578
145/277 [==============>...............] - ETA: 0s - loss: 71.2008 - mae: 5.8699
185/277 [===================>..........] - ETA: 0s - loss: 67.5144 - mae: 5.7055
228/277 [=======================>......] - ETA: 0s - loss: 67.1718 - mae: 5.5960
272/277 [============================>.] - ETA: 0s - loss: 62.8005 - mae: 5.5206
277/277 [==============================] - 0s 2ms/step - loss: 65.4147 - mae: 5.5948 - val_loss: 96.4298 - val_mae: 6.3515
## Epoch 91/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.0577 - mae: 0.2402
 40/277 [===>..........................] - ETA: 0s - loss: 62.4196 - mae: 6.0362
 84/277 [========>.....................] - ETA: 0s - loss: 62.7185 - mae: 5.8361
124/277 [============>.................] - ETA: 0s - loss: 63.5612 - mae: 5.5670
165/277 [================>.............] - ETA: 0s - loss: 53.7354 - mae: 5.1769
213/277 [======================>.......] - ETA: 0s - loss: 64.1113 - mae: 5.5020
256/277 [==========================>...] - ETA: 0s - loss: 67.1189 - mae: 5.6351
277/277 [==============================] - 0s 2ms/step - loss: 65.3849 - mae: 5.5869 - val_loss: 96.4342 - val_mae: 6.3562
## Epoch 92/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.8394 - mae: 0.9162
 41/277 [===>..........................] - ETA: 0s - loss: 98.8491 - mae: 6.3527
 83/277 [=======>......................] - ETA: 0s - loss: 82.7815 - mae: 6.2220
126/277 [============>.................] - ETA: 0s - loss: 80.4719 - mae: 6.0057
165/277 [================>.............] - ETA: 0s - loss: 76.4844 - mae: 5.9385
211/277 [=====================>........] - ETA: 0s - loss: 67.9527 - mae: 5.6668
259/277 [===========================>..] - ETA: 0s - loss: 67.6128 - mae: 5.6611
277/277 [==============================] - 0s 2ms/step - loss: 65.2993 - mae: 5.5876 - val_loss: 96.4404 - val_mae: 6.3603
## Epoch 93/100
## 
  1/277 [..............................] - ETA: 0s - loss: 11.4283 - mae: 3.3806
 33/277 [==>...........................] - ETA: 0s - loss: 131.9628 - mae: 7.8346
 63/277 [=====>........................] - ETA: 0s - loss: 85.4145 - mae: 5.9879 
 96/277 [=========>....................] - ETA: 0s - loss: 77.2705 - mae: 5.6889
125/277 [============>.................] - ETA: 0s - loss: 72.5442 - mae: 5.7209
155/277 [===============>..............] - ETA: 0s - loss: 67.5903 - mae: 5.6760
190/277 [===================>..........] - ETA: 0s - loss: 61.8577 - mae: 5.5307
220/277 [======================>.......] - ETA: 0s - loss: 62.3555 - mae: 5.5069
251/277 [==========================>...] - ETA: 0s - loss: 67.0467 - mae: 5.6000
277/277 [==============================] - 1s 2ms/step - loss: 65.2718 - mae: 5.5842 - val_loss: 96.2830 - val_mae: 6.3561
## Epoch 94/100
## 
  1/277 [..............................] - ETA: 0s - loss: 21.8427 - mae: 4.6736
 24/277 [=>............................] - ETA: 0s - loss: 80.0266 - mae: 7.1560
 56/277 [=====>........................] - ETA: 0s - loss: 71.7371 - mae: 6.5461
 89/277 [========>.....................] - ETA: 0s - loss: 87.6279 - mae: 6.7356
120/277 [===========>..................] - ETA: 0s - loss: 77.4653 - mae: 6.1520
155/277 [===============>..............] - ETA: 0s - loss: 71.4502 - mae: 5.8274
186/277 [===================>..........] - ETA: 0s - loss: 65.8131 - mae: 5.6225
214/277 [======================>.......] - ETA: 0s - loss: 72.0395 - mae: 5.7618
245/277 [=========================>....] - ETA: 0s - loss: 67.3074 - mae: 5.6089
277/277 [==============================] - 1s 2ms/step - loss: 65.2046 - mae: 5.5853 - val_loss: 96.2888 - val_mae: 6.3585
## Epoch 95/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.0037 - mae: 0.0610
 45/277 [===>..........................] - ETA: 0s - loss: 49.6275 - mae: 5.4161
 90/277 [========>.....................] - ETA: 0s - loss: 62.1622 - mae: 5.6254
133/277 [=============>................] - ETA: 0s - loss: 77.1613 - mae: 5.8536
173/277 [=================>............] - ETA: 0s - loss: 68.8858 - mae: 5.6187
210/277 [=====================>........] - ETA: 0s - loss: 68.7491 - mae: 5.6864
245/277 [=========================>....] - ETA: 0s - loss: 66.6280 - mae: 5.6136
277/277 [==============================] - 0s 2ms/step - loss: 65.1070 - mae: 5.5778 - val_loss: 96.0952 - val_mae: 6.3489
## Epoch 96/100
## 
  1/277 [..............................] - ETA: 0s - loss: 0.0097 - mae: 0.0985
 42/277 [===>..........................] - ETA: 0s - loss: 25.3311 - mae: 3.9299
 87/277 [========>.....................] - ETA: 0s - loss: 45.6023 - mae: 4.9802
129/277 [============>.................] - ETA: 0s - loss: 65.8353 - mae: 5.5421
171/277 [=================>............] - ETA: 0s - loss: 73.1256 - mae: 5.7656
216/277 [======================>.......] - ETA: 0s - loss: 67.5770 - mae: 5.5122
258/277 [==========================>...] - ETA: 0s - loss: 66.3535 - mae: 5.5588
277/277 [==============================] - 1s 2ms/step - loss: 65.1304 - mae: 5.5829 - val_loss: 95.9726 - val_mae: 6.3420
## Epoch 97/100
## 
  1/277 [..............................] - ETA: 0s - loss: 4.7475 - mae: 2.1789
 49/277 [====>.........................] - ETA: 0s - loss: 49.1845 - mae: 5.4878
 92/277 [========>.....................] - ETA: 0s - loss: 56.5546 - mae: 5.3013
127/277 [============>.................] - ETA: 0s - loss: 61.7236 - mae: 5.6536
161/277 [================>.............] - ETA: 0s - loss: 73.1619 - mae: 5.9270
193/277 [===================>..........] - ETA: 0s - loss: 72.7211 - mae: 5.8556
231/277 [========================>.....] - ETA: 0s - loss: 69.0490 - mae: 5.7497
277/277 [==============================] - 0s 2ms/step - loss: 65.0876 - mae: 5.5730 - val_loss: 95.9396 - val_mae: 6.3390
## Epoch 98/100
## 
  1/277 [..............................] - ETA: 0s - loss: 21.5835 - mae: 4.6458
 42/277 [===>..........................] - ETA: 0s - loss: 41.3305 - mae: 4.8712
 88/277 [========>.....................] - ETA: 0s - loss: 51.1253 - mae: 5.2511
132/277 [=============>................] - ETA: 0s - loss: 64.2439 - mae: 5.7079
174/277 [=================>............] - ETA: 0s - loss: 67.0650 - mae: 5.6467
215/277 [======================>.......] - ETA: 0s - loss: 62.9890 - mae: 5.5134
259/277 [===========================>..] - ETA: 0s - loss: 67.5281 - mae: 5.6690
277/277 [==============================] - 0s 2ms/step - loss: 65.0451 - mae: 5.5732 - val_loss: 95.8574 - val_mae: 6.3361
## Epoch 99/100
## 
  1/277 [..............................] - ETA: 0s - loss: 82.8241 - mae: 9.1008
 44/277 [===>..........................] - ETA: 0s - loss: 61.5563 - mae: 5.5518
 85/277 [========>.....................] - ETA: 0s - loss: 57.1438 - mae: 5.3400
118/277 [===========>..................] - ETA: 0s - loss: 66.6968 - mae: 5.5726
139/277 [==============>...............] - ETA: 0s - loss: 61.7505 - mae: 5.3817
158/277 [================>.............] - ETA: 0s - loss: 64.1457 - mae: 5.4984
184/277 [==================>...........] - ETA: 0s - loss: 66.0256 - mae: 5.7223
222/277 [=======================>......] - ETA: 0s - loss: 61.3214 - mae: 5.4531
266/277 [===========================>..] - ETA: 0s - loss: 58.8326 - mae: 5.4677
277/277 [==============================] - 1s 2ms/step - loss: 64.9434 - mae: 5.5710 - val_loss: 95.8224 - val_mae: 6.3276
## Epoch 100/100
## 
  1/277 [..............................] - ETA: 0s - loss: 212.6529 - mae: 14.5826
 44/277 [===>..........................] - ETA: 0s - loss: 31.6730 - mae: 4.6151  
 88/277 [========>.....................] - ETA: 0s - loss: 41.4278 - mae: 4.8359
133/277 [=============>................] - ETA: 0s - loss: 70.7448 - mae: 5.6579
180/277 [==================>...........] - ETA: 0s - loss: 60.5998 - mae: 5.3205
224/277 [=======================>......] - ETA: 0s - loss: 67.3051 - mae: 5.6433
263/277 [===========================>..] - ETA: 0s - loss: 66.9642 - mae: 5.6224
277/277 [==============================] - 0s 2ms/step - loss: 64.8816 - mae: 5.5692 - val_loss: 95.8108 - val_mae: 6.3384

Architecture 2: 1 hidden layer and 3 nodes

plt.plot(history.history['mae'])
plt.plot(history.history['val_mae'])
plt.title('Graph 6: model accuracy')
plt.ylabel('accuracy (MAE)')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()

plt.figure()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Graph 7: model loss (MSE)')
plt.ylabel('loss (MSE)')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()

Graph 4 and 5 show the model accuracy and loss for architecture one. Graphs 6 and 7 show the equivalent for architecture 2. These show that the deep learning model performs very well on the data. Both model architectures are able to get an average MAE of below 6, however architecture one gets a slightly lower MAE. This could be expected as architecture one was slightly bigger and therefore more expressive. These scores are equivalent to the best polynomial regression model. It was expected that the neural network may overfit, as the dataset is relatively small compared to datasets used for deep learning. Interestingly, it can be seen that the neural network does not appear to overfit. This may be because the networks are so small (3 and 1 hidden layers), compared to modern networks used for image processing.

4. Conclusion and discussion

Despite the neural network getting the same result as the polynomial of the 3rd degree, the polynomial linear regression is far more favorable in this case. Occam’s razor states that everything should be as simple as possible, and the latter is far more simple (Domingo, 1999). Regression techniques are also far faster to compute (although both take the order of seconds for a dataset of this size). Linear regression has a major advantage in that the weights are interpretable, i.e. one can look at the average change in house price per unit change in a feature. This means it can be easily described as a non-expert. However, this advantage is lost when the polynomial features are used (one cannot expect a non-expert to understand polynomial features). This means there is a tradeoff between model accuracy and model simplicity, and the best course of action depends on the specific use case. Therefore if we were advising an estate agent who was looking to obtain a tool for predicting house prices, we would advise that they use a linear regression technique, as the MAE is very low, and it uses simple, interpretable features.

Neural networks would have been a better alternative if more data was provided. Indeed, deep learning networks start as false positives and require substantial iteration to be optimized. In our case, we solely had 413 observations which is not ideal considering that neural networks require millions of data to be efficient. They also require significant computational costs which is not ideal in a business scenario. Furthermore, a potentially better approach to explore could have been regression splines, which algorithmically smoothen curves in order to fit the data using different polynomials. This method consists in locally adjusting the best fit when each point changes curvature. Indeed, our data would have been splitted into different segments to have a uniform relationship into one of the sub-segments.

5. Executive summary

The problem that we wished to address was finding which were the most important factors for house price in the Sindian Dist of Taiwan, and using these factors to predict the house price per unit area. We hope this tool could be used by investors. This also allows us to see which section of the district is the most demanded by local buyers. To do so, we looked at the significance of house age, ability to commute, and location in relation to the house price. We noticed that there was a central location in the city which concentrates the most buyers, the highest prices, the majority of the MRT stations, the oldest houses, and most of the purchases. As such, we can conclude that this area is principally a residential area consisting mostly of families. It is subsequently the most interesting region to invest in with the district.

Subsequently, we created a model which predicts the house price per unit area by multiplying each feature by a number and adding a separate number:

Distance to MRT * w1 + Transaction date * w2 + House age * w3 + w4 = Predict price unit area.

Investors can use this simple equation and numbers w1-w4 to calculate an accurate prediction of price per unit area. This equation has an average error of 7.4 (difference in price per unit area). Multiplying this error by the number of units areas in the property will give a range for the average error. The investors can use this error to decide if the investment is worth the risk.